二叉樹用例java
代碼解析:node
public class BinaryTree { static class TreeNode { Integer val; TreeNode left; TreeNode right; public TreeNode(Integer val) { this.val = val; } } public static TreeNode init(Integer[] arr, int index) { TreeNode node = null; if (index < arr.length) { node = new TreeNode(arr[index]); node.left = init(arr, 2 * index + 1); node.right = init(arr, 2 * index + 2); } return node; } private static List<Integer> list = new ArrayList<>(10); public static void main(String[] args) { Integer[] arr = new Integer[]{1, 3, 4, 5, 6, 7, 8}; System.out.println("遞歸實現前序遍歷: "+ rootLeftRightRecursive(init(arr,0))); list.clear(); System.out.println("非遞歸實現前序遍歷: "+ rootLeftRightNonRecursive(init(arr,0))); list.clear(); System.out.println(); System.out.println("遞歸實現中序遍歷: "+ leftRootRightRecursive(init(arr,0))); list.clear(); System.out.println("非遞歸實現中序遍歷: "+ leftRootRightNonRecursive(init(arr,0))); list.clear(); System.out.println(); System.out.println("遞歸實現後序遍歷: "+ leftRightRootRecursive(init(arr,0))); list.clear(); System.out.println("非遞歸實現後序遍歷: "+ leftRightRootNonRecursive(init(arr,0))); list.clear(); System.out.println(); System.out.println("層次遍歷: "+ levelOrder(init(arr,0))); System.out.println(); System.out.println("樹的深度爲: "+ depth(init(arr,0))); } /** * 遞歸實現前序遍歷 * 中-左-右 * @param node TreeNode * @return List */ public static List rootLeftRightRecursive(TreeNode node) { if (null != node){ list.add(node.val); rootLeftRightRecursive(node.left); rootLeftRightRecursive(node.right); } return list; } /** * 非遞歸實現前序遍歷 * 中-左-右 * @param node TreeNode * @return List */ public static List rootLeftRightNonRecursive(TreeNode node) { Stack<TreeNode> stack = new Stack<>(); TreeNode cur = node; while (null != cur || !stack.isEmpty()) { if (null != cur) { list.add(cur.val); stack.push(cur); cur = cur.left; } else { cur = stack.pop(); cur = cur.right; } } return list; } /** * 遞歸實現中序遍歷 * 左-中-右 * @param node TreeNode * @return List */ public static List leftRootRightRecursive(TreeNode node) { if (null!=node){ leftRootRightRecursive(node.left); list.add(node.val); leftRootRightRecursive(node.right); } return list; } /** * 非遞歸實現中序遍歷 * 左-中-右 * @param node TreeNode * @return List */ public static List leftRootRightNonRecursive(TreeNode node) { List<Integer> list = new ArrayList<>(10); Stack<TreeNode> stack = new Stack<>(); TreeNode cur = node; while (null != cur || !stack.isEmpty()) { if (null != cur) { stack.push(cur); cur = cur.left; } else { cur = stack.pop(); list.add(cur.val); cur = cur.right; } } return list; } /** * 遞歸實現後序遍歷 * 左-右-中 * @param node TreeNode * @return List */ public static List leftRightRootRecursive(TreeNode node){ if (null!=node){ leftRightRootRecursive(node.left); leftRightRootRecursive(node.right); list.add(node.val); } return list; } /** * 非遞歸實現後序遍歷 * 左-右-中 * @param node TreeNode * @return List */ public static List leftRightRootNonRecursive(TreeNode node){ if (null == node){ return list; } Stack<TreeNode> stack = new Stack<>(); stack.push(node); TreeNode cur; while (!stack.isEmpty()){ cur = stack.pop(); if (cur.left!=null){ stack.push(cur.left); } if (cur.right!=null){ stack.push(cur.right); } // 逆序添加 list.add(0,cur.val); } return list; } /** * 層序遍歷隊列實現(廣度優先算法BFS) * @param root TreeNode * @return List */ public static List<List<Integer>> levelOrder(TreeNode root){ List<List<Integer>> list = new ArrayList<>(); if(root == null){ return list; } Queue<TreeNode> queue = new LinkedList<>(); queue.add(root); while(!queue.isEmpty()){ int count = queue.size(); List<Integer> tmpList = new ArrayList<>(); while(count > 0){ TreeNode node = queue.poll(); tmpList.add(node.val); if(node.left!=null){ queue.add(node.left); } if(node.right!=null){ queue.add(node.right); } count--; } list.add(tmpList); } return list; } /** * 遞歸實現獲取樹的深度 * @param node TreeNode * @return int */ public static int depth(TreeNode node){ if (node == null){ return 0; } int left = depth(node.left); int right = depth(node.right); return left > right ? left + 1 : right + 1; } }
結果爲:算法
遞歸實現前序遍歷: [1, 3, 5, 6, 4, 7, 8] 非遞歸實現前序遍歷: [1, 3, 5, 6, 4, 7, 8] 遞歸實現中序遍歷: [5, 3, 6, 1, 7, 4, 8] 非遞歸實現中序遍歷: [5, 3, 6, 1, 7, 4, 8] 遞歸實現後序遍歷: [5, 6, 3, 7, 8, 4, 1] 非遞歸實現後序遍歷: [5, 6, 3, 7, 8, 4, 1] 層次遍歷: [[1], [3, 4], [5, 6, 7, 8]] 樹的深度爲: 3