安裝環境以下:html
集羣5個節點 node01~05java
node01~03 爲worker、 node0四、node05爲masternode
spark HA 必需要zookeepr來作協同服務,作master主備切換,zookeeper的安裝和配置再次不作贅述。python
yum源的配置請看:linux
1.安裝git
查看spark的相關包有哪些:github
[root@node05 hadoop-yarn]# yum list |grep spark spark-core.noarch 1.2.0+cdh5.3.0+364-1.cdh5.3.0.p0.36.el6 spark-history-server.noarch 1.2.0+cdh5.3.0+364-1.cdh5.3.0.p0.36.el6 spark-master.noarch 1.2.0+cdh5.3.0+364-1.cdh5.3.0.p0.36.el6 spark-python.noarch 1.2.0+cdh5.3.0+364-1.cdh5.3.0.p0.36.el6 hue-spark.x86_64 3.7.0+cdh5.3.0+134-1.cdh5.3.0.p0.24.el6 spark-worker.noarch 1.2.0+cdh5.3.0+364-1.cdh5.3.0.p0.36.el6
以上包做用以下:web
node04,node05上安裝master,node0一、node0二、node03上安裝workershell
在node04,node05上運行 sudo yum -y install spark-core spark-master spark-worker spark-python spark-history-server 在node01~03上運行 sudo yum -y install spark-core spark-worker spark-python
node04:spark-master spark-history-serverexpress
node05:spark-master
node01:spark-worker
node02:spark-worker
(1)修改配置文件 /etc/spark/conf/spark-env.sh
,其內容以下
export SPARK_LAUNCH_WITH_SCALA=0 export SPARK_LIBRARY_PATH=${SPARK_HOME}/lib export SCALA_LIBRARY_PATH=${SPARK_HOME}/lib export SPARK_MASTER_WEBUI_PORT=18080 export SPARK_MASTER_PORT=7077 export SPARK_WORKER_PORT=7078 export SPARK_WORKER_WEBUI_PORT=18081 export SPARK_WORKER_DIR=/var/run/spark/work export SPARK_LOG_DIR=/var/log/spark export SPARK_PID_DIR='/var/run/spark/' #採用Zookeeper保證HA,導入相應的環境變量 export SPARK_DAEMON_JAVA_OPTS="-Dspark.deploy.recoveryMode=ZOOKEEPER -Dspark.deploy.zookeeper.url=node01:2181,node02:2181,node03:2181 -Dspark.deploy.zookeeper.dir=/spark" export JAVA_HOME=/usr/java/jdk1.7.0_71/ #若是是多Master的狀況下,不能定義Spark_Master_IP的屬性,不然沒法啓動多個Master,這個屬性的定義能夠在Application中定義 #export SPARK_MASTER_IP=node04 export SPARK_WORKER_CORES=1 export SPARK_WORKER_INSTANCES=1 #指定每一個Worker須要的內存大小(全局) export SPARK_WORKER_MEMORY=5g #下面是結合Spark On Yarn方式的集羣模式須要配置的,獨立集羣模式不須要配置 export HADOOP_HOME=/usr/lib/hadoop export HADOOP_CONF_DIR=$HADOOP_HOME/etc/hadoop export YARN_CONF_DIR=$HADOOP_HOME/etc/Hadoop #spark on yarn 提交任務時防止找不到resourcemanager :INFO Client: Retrying connect to server: 0.0.0.0/0.0.0.0:8032. Already tried 0 time(s); retry policy is RetryUpToMaximumCountWithFixedSleep(maxRetries=10, sleepTime=1 SECONDS) export SPARK_YARN_USER_ENV="CLASSPATH=/usr/lib/hadoop"
export SPARK_DAEMON_JAVA_OPTS還能夠採用另外一種導入方式
#指定Spark恢復模式,這裏採用Zookeeper模式,默認爲NONE spark.deploy.recoveryMode ZOOKEEPER spark.deploy.zookeeper.url node01:2181,node02:2181,node03:2181 spark.deploy.zookeeper.dir /spark
選項:
spark.deploy.recoveryMode NONE 恢復模式(Master從新啓動的模式),有三種:1, ZooKeeper, 2, FileSystem, 3 NONE
spark.deploy.zookeeper.url ZooKeeper的Server地址
spark.deploy.zookeeper.dir /spark ZooKeeper 保存集羣元數據信息的文件目錄,包括Worker,Driver和Application。
(2)修改spark-default.conf (若是沒有作下配置,日誌將不會持久化,一旦運行完畢後,沒法查看日誌狀況)
在最後增長以下選項
#是否啓用事件日誌記錄 spark.eventLog.enabled true #Driver任務運行的日誌生成目錄 spark.eventLog.dir hdfs://mycluster/user/spark/eventslog #監控頁面須要監控的目錄,須要先啓用和指定事件日誌目錄,配合上面兩項使用 spark.history.fs.logDirectory hdfs://mycluster/user/spark/eventslog #若是想 YARN ResourceManager 訪問 Spark History Server ,則添加一行: spark.yarn.historyServer.address http://node04:19888
hdfs://mycluster/user/spark/eventslog該目錄爲HDFS的目錄,須要提早建立好,
同時這裏用到了HADOOP HA模式的集羣名稱mycluster,因此咱們須要把HADOOP的配置文件hdfs-site.xml複製到Spark的conf目錄下,這樣就不會報集羣名字mycluster找不到的問題
(3)修改slaves
node01
node02
node03
修改完後把配置文件分發到其餘節點:
scp -r /etc/spark/conf root@node01:/etc/spark scp -r /etc/spark/conf root@node02:/etc/spark scp -r /etc/spark/conf root@node03:/etc/spark scp -r /etc/spark/conf root@node04:/etc/spark
建立hdfs上的目錄;
sudo -u hdfs hadoop fs -mkdir /user/spark sudo -u hdfs hadoop fs -mkdir /user/spark/eventlog sudo -u hdfs hadoop fs -chown -R spark:spark /user/spark sudo -u hdfs hadoop fs -chmod 1777 /user/spark/eventlog
進入node05 的spark的sbin目錄執行start-all.sh
[root@node05 sbin]# ./start-all.sh starting org.apache.spark.deploy.master.Master, logging to /var/log/spark/spark-root-org.apache.spark.deploy.master.Master-1-node05.out node01: starting org.apache.spark.deploy.worker.Worker, logging to /var/log/spark/spark-root-org.apache.spark.deploy.worker.Worker-1-node01.out node02: starting org.apache.spark.deploy.worker.Worker, logging to /var/log/spark/spark-root-org.apache.spark.deploy.worker.Worker-1-node02.out node03: starting org.apache.spark.deploy.worker.Worker, logging to /var/log/spark/spark-root-org.apache.spark.deploy.worker.Worker-1-node03.out
進入node04的sbin目錄執行start-master.sh
[root@node04 sbin]# start-master.sh starting org.apache.spark.deploy.master.Master, logging to /var/log/spark/spark-root-org.apache.spark.deploy.master.Master-1-node04.out
當node05 ALIVE時,node04 standby,node05掛掉時,node04會頂替成爲master
在node05把master停掉
[root@node05 sbin]# ./stop-master.sh stopping org.apache.spark.deploy.master.Master
此時node04變成alive成爲master
你能夠在官方站點查看官方的例子。 除此以外,Spark 在發佈包的 examples 的文件夾中包含了幾個例子( Scala、Java、Python)。運行 Java 和 Scala 例子時你能夠傳遞類名給 Spark 的 bin/run-example腳本, 例如:
[root@node02 bin]# run-example SparkPi 10 16/11/19 00:34:51 INFO spark.SparkContext: Spark configuration: spark.app.name=Spark Pi spark.deploy.recoveryMode=ZOOKEEPER spark.deploy.zookeeper.dir=/spark spark.deploy.zookeeper.url=node01:2181,node02:2181,node03:2181 spark.eventLog.dir=hdfs://mycluster/user/spark/eventlog spark.eventLog.enabled=true spark.executor.memory=4g spark.jars=file:/usr/lib/spark/lib/spark-examples-1.2.0-cdh5.3.0-hadoop2.5.0-cdh5.3.0.jar spark.logConf=true spark.master=local[*] spark.scheduler.mode=FAIR spark.yarn.historyServer.address=http://node04:19888 spark.yarn.submit.file.replication=3 16/11/19 00:34:51 INFO spark.SecurityManager: Changing view acls to: root 16/11/19 00:34:51 INFO spark.SecurityManager: Changing modify acls to: root 16/11/19 00:34:51 INFO spark.SecurityManager: SecurityManager: authentication disabled; ui acls disabled; users with view permissions: Set(root); users with modify permissions: Set(root) 16/11/19 00:34:51 INFO slf4j.Slf4jLogger: Slf4jLogger started 16/11/19 00:34:51 INFO Remoting: Starting remoting 16/11/19 00:34:52 INFO Remoting: Remoting started; listening on addresses :[akka.tcp://sparkDriver@node02:45368] 16/11/19 00:34:52 INFO Remoting: Remoting now listens on addresses: [akka.tcp://sparkDriver@node02:45368] 16/11/19 00:34:52 INFO util.Utils: Successfully started service 'sparkDriver' on port 45368. 16/11/19 00:34:52 INFO spark.SparkEnv: Registering MapOutputTracker 16/11/19 00:34:52 INFO spark.SparkEnv: Registering BlockManagerMaster 16/11/19 00:34:52 INFO storage.DiskBlockManager: Created local directory at /tmp/spark-local-20161119003452-320d 16/11/19 00:34:52 INFO storage.MemoryStore: MemoryStore started with capacity 265.4 MB 16/11/19 00:34:52 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable 16/11/19 00:34:52 INFO spark.HttpFileServer: HTTP File server directory is /tmp/spark-f91a5447-3d40-4ef8-ba3f-6c4391566017 16/11/19 00:34:52 INFO spark.HttpServer: Starting HTTP Server 16/11/19 00:34:52 INFO server.Server: jetty-8.y.z-SNAPSHOT 16/11/19 00:34:52 INFO server.AbstractConnector: Started SocketConnector@0.0.0.0:46389 16/11/19 00:34:52 INFO util.Utils: Successfully started service 'HTTP file server' on port 46389. 16/11/19 00:34:53 INFO server.Server: jetty-8.y.z-SNAPSHOT 16/11/19 00:34:53 INFO server.AbstractConnector: Started SelectChannelConnector@0.0.0.0:4040 16/11/19 00:34:53 INFO util.Utils: Successfully started service 'SparkUI' on port 4040. 16/11/19 00:34:53 INFO ui.SparkUI: Started SparkUI at http://node02:4040 16/11/19 00:34:53 INFO spark.SparkContext: Added JAR file:/usr/lib/spark/lib/spark-examples-1.2.0-cdh5.3.0-hadoop2.5.0-cdh5.3.0.jar at http://172.16.145.112:46389/jars/spark-examples-1.2.0-cdh5.3.0-hadoop2.5.0-cdh5.3.0.jar with timestamp 1479486893473 16/11/19 00:34:53 INFO scheduler.FairSchedulableBuilder: Created default pool default, schedulingMode: FIFO, minShare: 0, weight: 1 16/11/19 00:34:53 INFO util.AkkaUtils: Connecting to HeartbeatReceiver: akka.tcp://sparkDriver@node02:45368/user/HeartbeatReceiver 16/11/19 00:34:53 INFO netty.NettyBlockTransferService: Server created on 37623 16/11/19 00:34:53 INFO storage.BlockManagerMaster: Trying to register BlockManager 16/11/19 00:34:53 INFO storage.BlockManagerMasterActor: Registering block manager localhost:37623 with 265.4 MB RAM, BlockManagerId(<driver>, localhost, 37623) 16/11/19 00:34:53 INFO storage.BlockManagerMaster: Registered BlockManager 16/11/19 00:34:54 WARN shortcircuit.DomainSocketFactory: The short-circuit local reads feature cannot be used because libhadoop cannot be loaded. 16/11/19 00:34:54 INFO scheduler.EventLoggingListener: Logging events to hdfs://mycluster/user/spark/eventlog/local-1479486893516 16/11/19 00:34:55 INFO spark.SparkContext: Starting job: reduce at SparkPi.scala:35 16/11/19 00:34:55 INFO scheduler.DAGScheduler: Got job 0 (reduce at SparkPi.scala:35) with 10 output partitions (allowLocal=false) 16/11/19 00:34:55 INFO scheduler.DAGScheduler: Final stage: Stage 0(reduce at SparkPi.scala:35) 16/11/19 00:34:55 INFO scheduler.DAGScheduler: Parents of final stage: List() 16/11/19 00:34:55 INFO scheduler.DAGScheduler: Missing parents: List() 16/11/19 00:34:55 INFO scheduler.DAGScheduler: Submitting Stage 0 (MappedRDD[1] at map at SparkPi.scala:31), which has no missing parents 16/11/19 00:34:55 INFO storage.MemoryStore: ensureFreeSpace(1728) called with curMem=0, maxMem=278302556 16/11/19 00:34:55 INFO storage.MemoryStore: Block broadcast_0 stored as values in memory (estimated size 1728.0 B, free 265.4 MB) 16/11/19 00:34:55 INFO storage.MemoryStore: ensureFreeSpace(1126) called with curMem=1728, maxMem=278302556 16/11/19 00:34:55 INFO storage.MemoryStore: Block broadcast_0_piece0 stored as bytes in memory (estimated size 1126.0 B, free 265.4 MB) 16/11/19 00:34:55 INFO storage.BlockManagerInfo: Added broadcast_0_piece0 in memory on localhost:37623 (size: 1126.0 B, free: 265.4 MB) 16/11/19 00:34:55 INFO storage.BlockManagerMaster: Updated info of block broadcast_0_piece0 16/11/19 00:34:55 INFO spark.SparkContext: Created broadcast 0 from broadcast at DAGScheduler.scala:838 16/11/19 00:34:55 INFO scheduler.DAGScheduler: Submitting 10 missing tasks from Stage 0 (MappedRDD[1] at map at SparkPi.scala:31) 16/11/19 00:34:55 INFO scheduler.TaskSchedulerImpl: Adding task set 0.0 with 10 tasks 16/11/19 00:34:55 INFO scheduler.FairSchedulableBuilder: Added task set TaskSet_0 tasks to pool default 16/11/19 00:34:55 INFO scheduler.TaskSetManager: Starting task 0.0 in stage 0.0 (TID 0, localhost, PROCESS_LOCAL, 1357 bytes) 16/11/19 00:34:55 INFO scheduler.TaskSetManager: Starting task 1.0 in stage 0.0 (TID 1, localhost, PROCESS_LOCAL, 1357 bytes) 16/11/19 00:34:55 INFO scheduler.TaskSetManager: Starting task 2.0 in stage 0.0 (TID 2, localhost, PROCESS_LOCAL, 1357 bytes) 16/11/19 00:34:55 INFO scheduler.TaskSetManager: Starting task 3.0 in stage 0.0 (TID 3, localhost, PROCESS_LOCAL, 1357 bytes) 16/11/19 00:34:55 INFO executor.Executor: Running task 1.0 in stage 0.0 (TID 1) 16/11/19 00:34:55 INFO executor.Executor: Running task 0.0 in stage 0.0 (TID 0) 16/11/19 00:34:55 INFO executor.Executor: Running task 3.0 in stage 0.0 (TID 3) 16/11/19 00:34:55 INFO executor.Executor: Running task 2.0 in stage 0.0 (TID 2) 16/11/19 00:34:55 INFO executor.Executor: Fetching http://172.16.145.112:46389/jars/spark-examples-1.2.0-cdh5.3.0-hadoop2.5.0-cdh5.3.0.jar with timestamp 1479486893473 16/11/19 00:34:55 INFO util.Utils: Fetching http://172.16.145.112:46389/jars/spark-examples-1.2.0-cdh5.3.0-hadoop2.5.0-cdh5.3.0.jar to /tmp/fetchFileTemp1952931669628282908.tmp 16/11/19 00:34:56 INFO executor.Executor: Adding file:/tmp/spark-a281a361-04d2-495d-bfa7-ccd2a9c9a2ac/spark-examples-1.2.0-cdh5.3.0-hadoop2.5.0-cdh5.3.0.jar to class loader 16/11/19 00:34:56 INFO executor.Executor: Finished task 1.0 in stage 0.0 (TID 1). 727 bytes result sent to driver 16/11/19 00:34:56 INFO executor.Executor: Finished task 3.0 in stage 0.0 (TID 3). 727 bytes result sent to driver 16/11/19 00:34:56 INFO scheduler.TaskSetManager: Starting task 4.0 in stage 0.0 (TID 4, localhost, PROCESS_LOCAL, 1357 bytes) 16/11/19 00:34:56 INFO executor.Executor: Running task 4.0 in stage 0.0 (TID 4) 16/11/19 00:34:56 INFO executor.Executor: Finished task 0.0 in stage 0.0 (TID 0). 727 bytes result sent to driver 16/11/19 00:34:56 INFO scheduler.TaskSetManager: Starting task 5.0 in stage 0.0 (TID 5, localhost, PROCESS_LOCAL, 1357 bytes) 16/11/19 00:34:56 INFO executor.Executor: Running task 5.0 in stage 0.0 (TID 5) 16/11/19 00:34:56 INFO scheduler.TaskSetManager: Finished task 1.0 in stage 0.0 (TID 1) in 727 ms on localhost (1/10) 16/11/19 00:34:56 INFO scheduler.TaskSetManager: Finished task 0.0 in stage 0.0 (TID 0) in 747 ms on localhost (2/10) 16/11/19 00:34:56 INFO scheduler.TaskSetManager: Finished task 3.0 in stage 0.0 (TID 3) in 734 ms on localhost (3/10) 16/11/19 00:34:56 INFO scheduler.TaskSetManager: Starting task 6.0 in stage 0.0 (TID 6, localhost, PROCESS_LOCAL, 1357 bytes) 16/11/19 00:34:56 INFO executor.Executor: Running task 6.0 in stage 0.0 (TID 6) 16/11/19 00:34:56 INFO executor.Executor: Finished task 4.0 in stage 0.0 (TID 4). 727 bytes result sent to driver 16/11/19 00:34:56 INFO executor.Executor: Finished task 2.0 in stage 0.0 (TID 2). 727 bytes result sent to driver 16/11/19 00:34:56 INFO scheduler.TaskSetManager: Starting task 7.0 in stage 0.0 (TID 7, localhost, PROCESS_LOCAL, 1357 bytes) 16/11/19 00:34:56 INFO executor.Executor: Running task 7.0 in stage 0.0 (TID 7) 16/11/19 00:34:56 INFO scheduler.TaskSetManager: Starting task 8.0 in stage 0.0 (TID 8, localhost, PROCESS_LOCAL, 1357 bytes) 16/11/19 00:34:56 INFO executor.Executor: Running task 8.0 in stage 0.0 (TID 8) 16/11/19 00:34:56 INFO scheduler.TaskSetManager: Finished task 4.0 in stage 0.0 (TID 4) in 60 ms on localhost (4/10) 16/11/19 00:34:56 INFO scheduler.TaskSetManager: Finished task 2.0 in stage 0.0 (TID 2) in 762 ms on localhost (5/10) 16/11/19 00:34:56 INFO executor.Executor: Finished task 5.0 in stage 0.0 (TID 5). 727 bytes result sent to driver 16/11/19 00:34:56 INFO scheduler.TaskSetManager: Starting task 9.0 in stage 0.0 (TID 9, localhost, PROCESS_LOCAL, 1357 bytes) 16/11/19 00:34:56 INFO scheduler.TaskSetManager: Finished task 5.0 in stage 0.0 (TID 5) in 59 ms on localhost (6/10) 16/11/19 00:34:56 INFO executor.Executor: Running task 9.0 in stage 0.0 (TID 9) 16/11/19 00:34:56 INFO executor.Executor: Finished task 8.0 in stage 0.0 (TID 8). 727 bytes result sent to driver 16/11/19 00:34:56 INFO scheduler.TaskSetManager: Finished task 8.0 in stage 0.0 (TID 8) in 113 ms on localhost (7/10) 16/11/19 00:34:56 INFO executor.Executor: Finished task 6.0 in stage 0.0 (TID 6). 727 bytes result sent to driver 16/11/19 00:34:56 INFO scheduler.TaskSetManager: Finished task 6.0 in stage 0.0 (TID 6) in 134 ms on localhost (8/10) 16/11/19 00:34:56 INFO executor.Executor: Finished task 9.0 in stage 0.0 (TID 9). 727 bytes result sent to driver 16/11/19 00:34:56 INFO scheduler.TaskSetManager: Finished task 9.0 in stage 0.0 (TID 9) in 136 ms on localhost (9/10) 16/11/19 00:34:56 INFO executor.Executor: Finished task 7.0 in stage 0.0 (TID 7). 727 bytes result sent to driver 16/11/19 00:34:56 INFO scheduler.TaskSetManager: Finished task 7.0 in stage 0.0 (TID 7) in 157 ms on localhost (10/10) 16/11/19 00:34:56 INFO scheduler.DAGScheduler: Stage 0 (reduce at SparkPi.scala:35) finished in 0.933 s 16/11/19 00:34:56 INFO scheduler.TaskSchedulerImpl: Removed TaskSet 0.0, whose tasks have all completed, from pool default 16/11/19 00:34:56 INFO scheduler.DAGScheduler: Job 0 finished: reduce at SparkPi.scala:35, took 1.468791 s Pi is roughly 3.142804 16/11/19 00:34:56 INFO handler.ContextHandler: stopped o.e.j.s.ServletContextHandler{/stages/stage/kill,null} 16/11/19 00:34:56 INFO handler.ContextHandler: stopped o.e.j.s.ServletContextHandler{/,null} 16/11/19 00:34:56 INFO handler.ContextHandler: stopped o.e.j.s.ServletContextHandler{/static,null} 16/11/19 00:34:56 INFO handler.ContextHandler: stopped o.e.j.s.ServletContextHandler{/executors/threadDump/json,null} 16/11/19 00:34:56 INFO handler.ContextHandler: stopped o.e.j.s.ServletContextHandler{/executors/threadDump,null} 16/11/19 00:34:56 INFO handler.ContextHandler: stopped o.e.j.s.ServletContextHandler{/executors/json,null} 16/11/19 00:34:56 INFO handler.ContextHandler: stopped o.e.j.s.ServletContextHandler{/executors,null} 16/11/19 00:34:56 INFO handler.ContextHandler: stopped o.e.j.s.ServletContextHandler{/environment/json,null} 16/11/19 00:34:56 INFO handler.ContextHandler: stopped o.e.j.s.ServletContextHandler{/environment,null} 16/11/19 00:34:56 INFO handler.ContextHandler: stopped o.e.j.s.ServletContextHandler{/storage/rdd/json,null} 16/11/19 00:34:56 INFO handler.ContextHandler: stopped o.e.j.s.ServletContextHandler{/storage/rdd,null} 16/11/19 00:34:56 INFO handler.ContextHandler: stopped o.e.j.s.ServletContextHandler{/storage/json,null} 16/11/19 00:34:56 INFO handler.ContextHandler: stopped o.e.j.s.ServletContextHandler{/storage,null} 16/11/19 00:34:56 INFO handler.ContextHandler: stopped o.e.j.s.ServletContextHandler{/stages/pool/json,null} 16/11/19 00:34:56 INFO handler.ContextHandler: stopped o.e.j.s.ServletContextHandler{/stages/pool,null} 16/11/19 00:34:56 INFO handler.ContextHandler: stopped o.e.j.s.ServletContextHandler{/stages/stage/json,null} 16/11/19 00:34:56 INFO handler.ContextHandler: stopped o.e.j.s.ServletContextHandler{/stages/stage,null} 16/11/19 00:34:56 INFO handler.ContextHandler: stopped o.e.j.s.ServletContextHandler{/stages/json,null} 16/11/19 00:34:56 INFO handler.ContextHandler: stopped o.e.j.s.ServletContextHandler{/stages,null} 16/11/19 00:34:56 INFO handler.ContextHandler: stopped o.e.j.s.ServletContextHandler{/jobs/job/json,null} 16/11/19 00:34:56 INFO handler.ContextHandler: stopped o.e.j.s.ServletContextHandler{/jobs/job,null} 16/11/19 00:34:56 INFO handler.ContextHandler: stopped o.e.j.s.ServletContextHandler{/jobs/json,null} 16/11/19 00:34:56 INFO handler.ContextHandler: stopped o.e.j.s.ServletContextHandler{/jobs,null} 16/11/19 00:34:56 INFO ui.SparkUI: Stopped Spark web UI at http://node02:4040 16/11/19 00:34:56 INFO scheduler.DAGScheduler: Stopping DAGScheduler 16/11/19 00:34:57 INFO spark.MapOutputTrackerMasterActor: MapOutputTrackerActor stopped! 16/11/19 00:34:57 INFO storage.MemoryStore: MemoryStore cleared 16/11/19 00:34:57 INFO storage.BlockManager: BlockManager stopped 16/11/19 00:34:57 INFO storage.BlockManagerMaster: BlockManagerMaster stopped 16/11/19 00:34:57 INFO remote.RemoteActorRefProvider$RemotingTerminator: Shutting down remote daemon. 16/11/19 00:34:57 INFO remote.RemoteActorRefProvider$RemotingTerminator: Remote daemon shut down; proceeding with flushing remote transports. 16/11/19 00:34:57 INFO spark.SparkContext: Successfully stopped SparkContext 16/11/19 00:34:57 INFO Remoting: Remoting shut down 16/11/19 00:34:57 INFO remote.RemoteActorRefProvider$RemotingTerminator: Remoting shut down.
經過 Python API 來運行交互模式:
# 使用2個 Worker 線程本地化運行 Spark(理想狀況下,該值應該根據運行機器的 CPU 核數設定)
[root@node02 bin]# pyspark --master local[2]
Python 2.6.6 (r266:84292, Jan 22 2014, 09:42:36)
[GCC 4.4.7 20120313 (Red Hat 4.4.7-4)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
16/11/19 00:38:55 INFO spark.SparkContext: Spark configuration:
spark.app.name=PySparkShell
spark.deploy.recoveryMode=ZOOKEEPER
spark.deploy.zookeeper.dir=/spark
spark.deploy.zookeeper.url=node01:2181,node02:2181,node03:2181
spark.eventLog.dir=hdfs://mycluster/user/spark/eventlog
spark.eventLog.enabled=true
spark.executor.memory=4g
spark.logConf=true
spark.master=local[2]
spark.rdd.compress=True
spark.scheduler.mode=FAIR
spark.serializer.objectStreamReset=100
spark.yarn.historyServer.address=http://node04:19888
spark.yarn.submit.file.replication=3
16/11/19 00:38:55 INFO spark.SecurityManager: Changing view acls to: root
16/11/19 00:38:55 INFO spark.SecurityManager: Changing modify acls to: root
16/11/19 00:38:55 INFO spark.SecurityManager: SecurityManager: authentication disabled; ui acls disabled; users with view permissions: Set(root); users with modify permissions: Set(root)
16/11/19 00:38:56 INFO slf4j.Slf4jLogger: Slf4jLogger started
16/11/19 00:38:56 INFO Remoting: Starting remoting
16/11/19 00:38:56 INFO Remoting: Remoting started; listening on addresses :[akka.tcp://sparkDriver@node02:47345]
16/11/19 00:38:56 INFO Remoting: Remoting now listens on addresses: [akka.tcp://sparkDriver@node02:47345]
16/11/19 00:38:56 INFO util.Utils: Successfully started service 'sparkDriver' on port 47345.
16/11/19 00:38:56 INFO spark.SparkEnv: Registering MapOutputTracker
16/11/19 00:38:56 INFO spark.SparkEnv: Registering BlockManagerMaster
16/11/19 00:38:56 INFO storage.DiskBlockManager: Created local directory at /tmp/spark-local-20161119003856-0d19
16/11/19 00:38:56 INFO storage.MemoryStore: MemoryStore started with capacity 265.4 MB
16/11/19 00:38:57 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
16/11/19 00:38:57 INFO spark.HttpFileServer: HTTP File server directory is /tmp/spark-7d1a1480-43a8-4195-a1f1-3909f5c8d02b
16/11/19 00:38:57 INFO spark.HttpServer: Starting HTTP Server
16/11/19 00:38:57 INFO server.Server: jetty-8.y.z-SNAPSHOT
16/11/19 00:38:57 INFO server.AbstractConnector: Started SocketConnector@0.0.0.0:56686
16/11/19 00:38:57 INFO util.Utils: Successfully started service 'HTTP file server' on port 56686.
16/11/19 00:38:57 INFO server.Server: jetty-8.y.z-SNAPSHOT
16/11/19 00:38:57 INFO server.AbstractConnector: Started SelectChannelConnector@0.0.0.0:4040
16/11/19 00:38:57 INFO util.Utils: Successfully started service 'SparkUI' on port 4040.
16/11/19 00:38:57 INFO ui.SparkUI: Started SparkUI at http://node02:4040
16/11/19 00:38:57 INFO scheduler.FairSchedulableBuilder: Created default pool default, schedulingMode: FIFO, minShare: 0, weight: 1
16/11/19 00:38:57 INFO util.AkkaUtils: Connecting to HeartbeatReceiver: akka.tcp://sparkDriver@node02:47345/user/HeartbeatReceiver
16/11/19 00:38:58 INFO netty.NettyBlockTransferService: Server created on 49996
16/11/19 00:38:58 INFO storage.BlockManagerMaster: Trying to register BlockManager
16/11/19 00:38:58 INFO storage.BlockManagerMasterActor: Registering block manager localhost:49996 with 265.4 MB RAM, BlockManagerId(<driver>, localhost, 49996)
16/11/19 00:38:58 INFO storage.BlockManagerMaster: Registered BlockManager
16/11/19 00:38:59 WARN shortcircuit.DomainSocketFactory: The short-circuit local reads feature cannot be used because libhadoop cannot be loaded.
16/11/19 00:38:59 INFO scheduler.EventLoggingListener: Logging events to hdfs://mycluster/user/spark/eventlog/local-1479487137931
Welcome to
____ __
/ __/__ ___ _____/ /__
_\ \/ _ \/ _ `/ __/ '_/
/__ / .__/\_,_/_/ /_/\_\ version 1.2.0
/_/
Using Python version 2.6.6 (r266:84292, Jan 22 2014 09:42:36)
SparkContext available as sc.
>>>
你也能夠運行 Python 編寫的應用:
$ mkdir -p /usr/lib/spark/examples/python $ tar zxvf /usr/lib/spark/lib/python.tar.gz -C /usr/lib/spark/examples/python $ ./bin/spark-submit examples/python/pi.py 10
另外,你還能夠運行 spark shell 的交互模式:
# 使用2個 Worker 線程本地化運行 Spark(理想狀況下,該值應該根據運行機器的 CPU 核數設定) $ ./bin/spark-shell --master local[2] Welcome to ____ __ / __/__ ___ _____/ /__ _\ \/ _ \/ _ `/ __/ `_/ /___/ .__/\_,_/_/ /_/\_\ version 1.2.0 /_/ Using Scala version 2.10.4 (Java HotSpot(TM) 64-Bit Server VM, Java 1.7.0_71) Type in expressions to have them evaluated. Type :help for more information. Spark context available as sc. scala> val lines = sc.textFile("data.txt") scala> val lineLengths = lines.map(s => s.length) scala> val totalLength = lineLengths.reduce((a, b) => a + b)
上面是一個 RDD 的示例程序,從一個外部文件建立了一個基本的 RDD對象。若是想運行這段程序,請確保 data.txt 文件在當前目錄中存在。
該模式下只需在一個節點上安裝 spark 的相關組件便可。經過 spark-shel l 運行下面的 wordcount 例子,
讀取 hdfs 的一個例子: $ echo "hello world" >test.txt $ hadoop fs -put test.txt /tmp $ spark-shell scala> val file = sc.textFile("hdfs://mycluster/tmp/test.txt") scala> file.count()
更復雜的一個例子,運行 mapreduce 統計單詞數:
$ spark-shell scala> val file = sc.textFile("hdfs://mycluster/tmp/test.txt") scala> val counts = file.flatMap(line => line.split(" ")).map(word => (word, 1)).reduceByKey(_ + _) scala> counts.saveAsTextFile("hdfs://mycluster/tmp/output")
運行完成以後,你能夠查看 hdfs://mycluster/tmp/output
目錄下的文件內容
[root@node01 spark]# hadoop fs -cat /tmp/output/part-00000 (hello,1) (world,1)
另外,spark-shell 後面還能夠加上其餘參數,例如:鏈接指定的 master、運行核數等等:
$ spark-shell --master spark://node04:7077 --cores 2 scala>
也能夠增長 jar:
$ spark-shell --master spark://node04:7077 --cores 2 --jars code.jar scala>
運行 spark-shell --help
能夠查看更多的參數。
另外,也能夠使用 spark-submit 以 Standalone 模式運行 SparkPi 程序:
$ spark-submit --class org.apache.spark.examples.SparkPi --deploy-mode client --master spark://node04:7077 /usr/lib/spark/lib/spark-examples-1.2.0-cdh5.3.0-hadoop2.5.0-cdh5.3.0.jar 10
以 YARN 客戶端方式運行 SparkPi 程序:
spark-submit --class org.apache.spark.examples.SparkPi --deploy-mode client --master yarn /usr/lib/spark/lib/spark-examples-1.2.0-cdh5.3.0-hadoop2.5.0-cdh5.3.0.jar 10
以 YARN 集羣方式運行 SparkPi 程序:
spark-submit --class org.apache.spark.examples.SparkPi --deploy-mode cluster --master yarn /usr/lib/spark/lib/spark-examples-1.2.0-cdh5.3.0-hadoop2.5.0-cdh5.3.0.jar 10
運行在 YARN 集羣之上的時候,能夠手動把 spark-assembly 相關的 jar 包拷貝到 hdfs 上去,而後設置 SPARK_JAR
環境變量:
$ hdfs dfs -mkdir -p /user/spark/share/lib $ hdfs dfs -put $SPARK_HOME/lib/spark-assembly.jar /user/spark/share/lib/spark-assembly.jar $ SPARK_JAR=hdfs://<nn>:<port>/user/spark/share/lib/spark-assembly.jar
參考:http://blog.csdn.net/furenjievip/article/details/44003467
http://blog.csdn.net/durie_/article/details/50789560