分頁查詢是最經常使用的場景之一,但也一般也是最容易出問題的地方。好比對於下面簡單的語句,通常 DBA 想到的辦法是在 type, name, create_time 字段上加組合索引。這樣條件排序都能有效的利用到索引,性能迅速提高。前端
SELECT * FROM operation WHERE type = 'SQLStats' AND name = 'SlowLog' ORDER BY create_time LIMIT 1000, 10;
好吧,可能 90% 以上的 DBA 解決該問題就到此爲止。但當 LIMIT 子句變成 「LIMIT 1000000,10」 時,程序員仍然會抱怨:我只取 10 條記錄爲何仍是慢?mysql
要知道數據庫也並不知道第 1000000 條記錄從什麼地方開始,即便有索引也須要從頭計算一次。出現這種性能問題,多數情形下是程序員偷懶了。程序員
在前端數據瀏覽翻頁,或者大數據分批導出等場景下,是能夠將上一頁的最大值當成參數做爲查詢條件的。SQL 從新設計以下:面試
SELECT * FROM operation WHERE type = 'SQLStats' AND name = 'SlowLog' AND create_time > '2017-03-16 14:00:00' ORDER BY create_time limit 10;
在新設計下查詢時間基本固定,不會隨着數據量的增加而發生變化。算法
SQL 語句中查詢變量和字段定義類型不匹配是另外一個常見的錯誤。好比下面的語句:sql
mysql> explain extended SELECT * > FROM my_balance b > WHERE b.bpn = 14000000123 > AND b.isverified IS NULL ; mysql> show warnings; | Warning | 1739 | Cannot use ref access on index 'bpn' due to type or collation conversion on field 'bpn'
其中字段 bpn 的定義爲 varchar(20),MySQL 的策略是將字符串轉換爲數字以後再比較。函數做用於表字段,索引失效。數據庫
上述狀況多是應用程序框架自動填入的參數,而不是程序員的原意。如今應用框架不少很繁雜,使用方便的同時也當心它可能給本身挖坑。app
雖然 MySQL5.6 引入了物化特性,但須要特別注意它目前僅僅針對查詢語句的優化。對於更新或刪除須要手工重寫成 JOIN。框架
好比下面 UPDATE 語句,MySQL 實際執行的是循環 / 嵌套子查詢(DEPENDENT SUBQUERY),其執行時間可想而知。函數
UPDATE operation o SET status = 'applying' WHERE o.id IN (SELECT id FROM (SELECT o.id, o.status FROM operation o WHERE o.group = 123 AND o.status NOT IN ( 'done' ) ORDER BY o.parent, o.id LIMIT 1) t);
執行計劃:
+----+--------------------+-------+-------+---------------+---------+---------+-------+------+-----------------------------------------------------+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +----+--------------------+-------+-------+---------------+---------+---------+-------+------+-----------------------------------------------------+ | 1 | PRIMARY | o | index | | PRIMARY | 8 | | 24 | Using where; Using temporary | | 2 | DEPENDENT SUBQUERY | | | | | | | | Impossible WHERE noticed after reading const tables | | 3 | DERIVED | o | ref | idx_2,idx_5 | idx_5 | 8 | const | 1 | Using where; Using filesort | +----+--------------------+-------+-------+---------------+---------+---------+-------+------+-----------------------------------------------------+
重寫爲 JOIN 以後,子查詢的選擇模式從 DEPENDENT SUBQUERY 變成 DERIVED,執行速度大大加快,從 7 秒下降到 2 毫秒
UPDATE operation o JOIN (SELECT o.id, o.status FROM operation o WHERE o.group = 123 AND o.status NOT IN ( 'done' ) ORDER BY o.parent, o.id LIMIT 1) t ON o.id = t.id SET status = 'applying'
執行計劃簡化爲:
+----+-------------+-------+------+---------------+-------+---------+-------+------+-----------------------------------------------------+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +----+-------------+-------+------+---------------+-------+---------+-------+------+-----------------------------------------------------+ | 1 | PRIMARY | | | | | | | | Impossible WHERE noticed after reading const tables | | 2 | DERIVED | o | ref | idx_2,idx_5 | idx_5 | 8 | const | 1 | Using where; Using filesort | +----+-------------+-------+------+---------------+-------+---------+-------+------+-----------------------------------------------------+
MySQL 不能利用索引進行混合排序。但在某些場景,仍是有機會使用特殊方法提高性能的。
SELECT * FROM my_order o INNER JOIN my_appraise a ON a.orderid = o.id ORDER BY a.is_reply ASC, a.appraise_time DESC LIMIT 0, 20
執行計劃顯示爲全表掃描:
+----+-------------+-------+--------+-------------+---------+---------+---------------+---------+-+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra +----+-------------+-------+--------+-------------+---------+---------+---------------+---------+-+ | 1 | SIMPLE | a | ALL | idx_orderid | NULL | NULL | NULL | 1967647 | Using filesort | | 1 | SIMPLE | o | eq_ref | PRIMARY | PRIMARY | 122 | a.orderid | 1 | NULL | +----+-------------+-------+--------+---------+---------+---------+-----------------+---------+-+
因爲 is_reply 只有 0 和 1 兩種狀態,咱們按照下面的方法重寫後,執行時間從 1.58 秒下降到 2 毫秒。
SELECT * FROM ((SELECT * FROM my_order o INNER JOIN my_appraise a ON a.orderid = o.id AND is_reply = 0 ORDER BY appraise_time DESC LIMIT 0, 20) UNION ALL (SELECT * FROM my_order o INNER JOIN my_appraise a ON a.orderid = o.id AND is_reply = 1 ORDER BY appraise_time DESC LIMIT 0, 20)) t ORDER BY is_reply ASC, appraisetime DESC LIMIT 20;
MySQL 對待 EXISTS 子句時,仍然採用嵌套子查詢的執行方式。以下面的 SQL 語句:
SELECT * FROM my_neighbor n LEFT JOIN my_neighbor_apply sra ON n.id = sra.neighbor_id AND sra.user_id = 'xxx' WHERE n.topic_status < 4 AND EXISTS(SELECT 1 FROM message_info m WHERE n.id = m.neighbor_id AND m.inuser = 'xxx') AND n.topic_type <> 5
執行計劃爲:
+----+--------------------+-------+------+-----+------------------------------------------+---------+-------+---------+ -----+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +----+--------------------+-------+------+ -----+------------------------------------------+---------+-------+---------+ -----+ | 1 | PRIMARY | n | ALL | | NULL | NULL | NULL | 1086041 | Using where | | 1 | PRIMARY | sra | ref | | idx_user_id | 123 | const | 1 | Using where | | 2 | DEPENDENT SUBQUERY | m | ref | | idx_message_info | 122 | const | 1 | Using index condition; Using where | +----+--------------------+-------+------+ -----+------------------------------------------+---------+-------+---------+ -----+
去掉 exists 更改成 join,可以避免嵌套子查詢,將執行時間從 1.93 秒下降爲 1 毫秒。
SELECT * FROM my_neighbor n INNER JOIN message_info m ON n.id = m.neighbor_id AND m.inuser = 'xxx' LEFT JOIN my_neighbor_apply sra ON n.id = sra.neighbor_id AND sra.user_id = 'xxx' WHERE n.topic_status < 4 AND n.topic_type <> 5
新的執行計劃:
+----+-------------+-------+--------+ -----+------------------------------------------+---------+ -----+------+ -----+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +----+-------------+-------+--------+ -----+------------------------------------------+---------+ -----+------+ -----+ | 1 | SIMPLE | m | ref | | idx_message_info | 122 | const | 1 | Using index condition | | 1 | SIMPLE | n | eq_ref | | PRIMARY | 122 | ighbor_id | 1 | Using where | | 1 | SIMPLE | sra | ref | | idx_user_id | 123 | const | 1 | Using where | +----+-------------+-------+--------+ -----+------------------------------------------+---------+ -----+------+ -----+
外部查詢條件不可以下推到複雜的視圖或子查詢的狀況有:
聚合子查詢;
含有 LIMIT 的子查詢;
UNION 或 UNION ALL 子查詢;
輸出字段中的子查詢;
以下面的語句,從執行計劃能夠看出其條件做用於聚合子查詢以後
SELECT * FROM (SELECT target, Count(*) FROM operation GROUP BY target) t WHERE target = 'rm-xxxx'
+----+-------------+------------+-------+---------------+-------------+---------+-------+------+-------------+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +----+-------------+------------+-------+---------------+-------------+---------+-------+------+-------------+ | 1 | PRIMARY | <derived2> | ref | <auto_key0> | <auto_key0> | 514 | const | 2 | Using where | | 2 | DERIVED | operation | index | idx_4 | idx_4 | 519 | NULL | 20 | Using index | +----+-------------+------------+-------+---------------+-------------+---------+-------+------+-------------+
肯定從語義上查詢條件能夠直接下推後,重寫以下:
SELECT target, Count(*) FROM operation WHERE target = 'rm-xxxx' GROUP BY target
執行計劃變爲:
+----+-------------+-----------+------+---------------+-------+---------+-------+------+--------------------+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +----+-------------+-----------+------+---------------+-------+---------+-------+------+--------------------+ | 1 | SIMPLE | operation | ref | idx_4 | idx_4 | 514 | const | 1 | Using where; Using index | +----+-------------+-----------+------+---------------+-------+---------+-------+------+--------------------+
先上初始 SQL 語句:
SELECT * FROM my_order o LEFT JOIN my_userinfo u ON o.uid = u.uid LEFT JOIN my_productinfo p ON o.pid = p.pid WHERE ( o.display = 0 ) AND ( o.ostaus = 1 ) ORDER BY o.selltime DESC LIMIT 0, 15
該 SQL 語句原意是:先作一系列的左鏈接,而後排序取前 15 條記錄。從執行計劃也能夠看出,最後一步估算排序記錄數爲 90 萬,時間消耗爲 12 秒。
+----+-------------+-------+--------+---------------+---------+---------+-----------------+--------+----------------------------------------------------+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +----+-------------+-------+--------+---------------+---------+---------+-----------------+--------+----------------------------------------------------+ | 1 | SIMPLE | o | ALL | NULL | NULL | NULL | NULL | 909119 | Using where; Using temporary; Using filesort | | 1 | SIMPLE | u | eq_ref | PRIMARY | PRIMARY | 4 | o.uid | 1 | NULL | | 1 | SIMPLE | p | ALL | PRIMARY | NULL | NULL | NULL | 6 | Using where; Using join buffer (Block Nested Loop) | +----+-------------+-------+--------+---------------+---------+---------+-----------------+--------+----------------------------------------------------+
因爲最後 WHERE 條件以及排序均針對最左主表,所以能夠先對 my_order 排序提早縮小數據量再作左鏈接。SQL 重寫後以下,執行時間縮小爲 1 毫秒左右。
SELECT * FROM ( SELECT * FROM my_order o WHERE ( o.display = 0 ) AND ( o.ostaus = 1 ) ORDER BY o.selltime DESC LIMIT 0, 15 ) o LEFT JOIN my_userinfo u ON o.uid = u.uid LEFT JOIN my_productinfo p ON o.pid = p.pid ORDER BY o.selltime DESC limit 0, 15
再檢查執行計劃:子查詢物化後(select_type=DERIVED) 參與 JOIN。雖然估算行掃描仍然爲 90 萬,可是利用了索引以及 LIMIT 子句後,實際執行時間變得很小。
+----+-------------+------------+--------+---------------+---------+---------+-------+--------+----------------------------------------------------+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +----+-------------+------------+--------+---------------+---------+---------+-------+--------+----------------------------------------------------+ | 1 | PRIMARY | <derived2> | ALL | NULL | NULL | NULL | NULL | 15 | Using temporary; Using filesort | | 1 | PRIMARY | u | eq_ref | PRIMARY | PRIMARY | 4 | o.uid | 1 | NULL | | 1 | PRIMARY | p | ALL | PRIMARY | NULL | NULL | NULL | 6 | Using where; Using join buffer (Block Nested Loop) | | 2 | DERIVED | o | index | NULL | idx_1 | 5 | NULL | 909112 | Using where | +----+-------------+------------+--------+---------------+---------+---------+-------+--------+----------------------------------------------------+
再來看下面這個已經初步優化過的例子 (左鏈接中的主表優先做用查詢條件):
SELECT a.*, c.allocated FROM ( SELECT resourceid FROM my_distribute d WHERE isdelete = 0 AND cusmanagercode = '1234567' ORDER BY salecode limit 20) a LEFT JOIN ( SELECT resourcesid, sum(ifnull(allocation, 0) * 12345) allocated FROM my_resources GROUP BY resourcesid) c ON a.resourceid = c.resourcesid
那麼該語句還存在其它問題嗎?不難看出子查詢 c 是全表聚合查詢,在表數量特別大的狀況下會致使整個語句的性能降低。
其實對於子查詢 c,左鏈接最後結果集只關心能和主表 resourceid 能匹配的數據。所以咱們能夠重寫語句以下,執行時間從原來的 2 秒降低到 2 毫秒。
SELECT a.*, c.allocated FROM ( SELECT resourceid FROM my_distribute d WHERE isdelete = 0 AND cusmanagercode = '1234567' ORDER BY salecode limit 20) a LEFT JOIN ( SELECT resourcesid, sum(ifnull(allocation, 0) * 12345) allocated FROM my_resources r, ( SELECT resourceid FROM my_distribute d WHERE isdelete = 0 AND cusmanagercode = '1234567' ORDER BY salecode limit 20) a WHERE r.resourcesid = a.resourcesid GROUP BY resourcesid) c ON a.resourceid = c.resourcesid
可是子查詢 a 在咱們的 SQL 語句中出現了屢次。這種寫法不只存在額外的開銷,還使得整個語句顯的繁雜。使用 WITH 語句再次重寫:
WITH a AS ( SELECT resourceid FROM my_distribute d WHERE isdelete = 0 AND cusmanagercode = '1234567' ORDER BY salecode limit 20) SELECT a.*, c.allocated FROM a LEFT JOIN ( SELECT resourcesid, sum(ifnull(allocation, 0) * 12345) allocated FROM my_resources r, a WHERE r.resourcesid = a.resourcesid GROUP BY resourcesid) c ON a.resourceid = c.resourcesid
數據庫編譯器產生執行計劃,決定着 SQL 的實際執行方式。可是編譯器只是盡力服務,全部數據庫的編譯器都不是盡善盡美的。
上述提到的多數場景,在其它數據庫中也存在性能問題。瞭解數據庫編譯器的特性,才能避規其短處,寫出高性能的 SQL 語句。
程序員在設計數據模型以及編寫 SQL 語句時,要把算法的思想或意識帶進來。
編寫複雜 SQL 語句要養成使用 WITH 語句的習慣。簡潔且思路清晰的 SQL 語句也能減少數據庫的負擔 。
「不積跬步,無以致千里」,但願將來的你能:有夢爲馬 隨處可棲!加油,少年!
關注公衆號:「Java 知己」,天天更新Java知識哦,期待你的到來!