Spark Structured Streaming框架(5)之進程管理

  Structured Streaming提供一些API來管理Streaming對象。用戶能夠經過這些API來手動管理已經啓動的Streaming,保證在系統中的Streaming有序執行。html

1. StreamingQuery

 

  在調用DataStreamWriter方法的start啓動Streaming後,會返回一個StreamingQuery對象。因此用戶就能夠經過這個對象來管理Streaming。apache

以下所示:ide

val query = df.writeStream.format("console").start() // get the query object ui

 

query.id // get the unique identifier of the running query that persists across restarts from checkpoint data this

 

query.runId // get the unique id of this run of the query, which will be generated at every start/restart spa

 

query.name // get the name of the auto-generated or user-specified name rest

 

query.explain() // print detailed explanations of the query orm

 

query.stop() // stop the query htm

 

query.awaitTermination() // block until query is terminated, with stop() or with error 對象

 

query.exception // the exception if the query has been terminated with error

 

query.recentProgress // an array of the most recent progress updates for this query

 

query.lastProgress // the most recent progress update of this streaming query

 

2. StreamingQueryManager

 

  Structured Streaming提供了另一個管理Streaming的接口是:StreamingQueryManager。用戶能夠經過SparkSession對象的streams方法得到。

以下所示:

val spark: SparkSession = ...

val streamManager = spark.streams()

streamManager.active // get the list of currently active streaming queries

 

streamManager.get(id) // get a query object by its unique id

 

streamManager.awaitAnyTermination() // block until any one of them terminates

 

3. 參考文獻

 

[2]. Kafka Integration Guide.

相關文章
相關標籤/搜索