如何從Microsoft SQL數據庫中提取數據html
# Import libraries
import pandas as pd import sys from sqlalchemy import create_engine, MetaData, Table, select, engine
print('Python version ' + sys.version) print('Pandas version ' + pd.__version__)
在本節中,咱們使用sqlalchemy庫從sql數據庫中獲取數據。確保使用您本身的ServerName,Database,TableName。python
# Parameters
TableName = "data" DB = { 'drivername': 'mssql+pyodbc', 'servername': 'DAVID-THINK', #'port': '5432', #'username': 'lynn', #'password': '', 'database': 'BizIntel', 'driver': 'SQL Server Native Client 11.0', 'trusted_connection': 'yes', 'legacy_schema_aliasing': False } # Create the connection engine = create_engine(DB['drivername'] + '://' + DB['servername'] + '/' + DB['database'] + '?' + 'driver=' + DB['driver'] + ';' + 'trusted_connection=' + DB['trusted_connection'], legacy_schema_aliasing=DB['legacy_schema_aliasing']) conn = engine.connect() # Required for querying tables metadata = MetaData(conn) # Table to query tbl = Table(TableName, metadata, autoload=True, schema="dbo") #tbl.create(checkfirst=True) # Select all sql = tbl.select() # run sql code result = conn.execute(sql) # Insert to a dataframe df = pd.DataFrame(data=list(result), columns=result.keys()) # Close connection conn.close() print('Done')
df.head()
df.dtypes
轉換爲特定的數據類型。下面的代碼必須修改爲符合你的表。sql
import pandas.io.sql import pyodbc
# Parameters
server = 'DAVID-THINK' db = 'BizIntel' # Create the connection conn = pyodbc.connect('DRIVER={SQL Server};SERVER=' + DB['servername'] + ';DATABASE=' + DB['database'] + ';Trusted_Connection=yes') # query db sql = """ SELECT top 5 * FROM data """ df = pandas.io.sql.read_sql(sql, conn) df.head()
from sqlalchemy import create_engine
# Parameters
ServerName = "DAVID-THINK" Database = "BizIntel" Driver = "driver=SQL Server Native Client 11.0" # Create the connection engine = create_engine('mssql+pyodbc://' + ServerName + '/' + Database + "?" + Driver) df = pd.read_sql_query("SELECT top 5 * FROM data", engine) df
This tutorial was rewrited by CDS.數據庫