緩存系統的用來代替直接訪問數據庫,用來提高系統性能,減少數據庫複雜。早期緩存跟系統在一個虛擬機裏,這樣內存訪問,速度最快。 後來應用系統水平擴展,緩存做爲一個獨立系統存在,如redis,可是每次從緩存獲取數據,都仍是要經過網絡訪問才能獲取,效率相對於早先從內存裏獲取,仍是差了點。若是一個應用,好比傳統的企業應用,一次頁面顯示,要訪問數次redis,那效果就不是特別好,所以,如今有人提出了一二級緩存。即一級緩存跟系統在一個虛擬機內,這樣速度最快。二級緩存位於redis裏,當一級緩存沒有數據的時候,再從redis裏獲取,並同步到一級緩存裏。java
如今實現這種一二級緩存的也挺多的,好比 hazelcast,新版的Ehcache..不過,實際上,若是你用spring boot,手裏又一個Redis,則不須要搞hazelcastEhcache,只須要200行代碼,就能在spring boot基礎上,提供一個一二級緩存,代碼以下:redis
import java.io.UnsupportedEncodingException; import java.util.concurrent.ConcurrentHashMap; import org.springframework.beans.factory.annotation.Value; import org.springframework.boot.autoconfigure.AutoConfigureBefore; import org.springframework.boot.bind.RelaxedPropertyResolver; import org.springframework.context.annotation.Bean; import org.springframework.context.annotation.Condition; import org.springframework.context.annotation.ConditionContext; import org.springframework.context.annotation.Conditional; import org.springframework.context.annotation.Configuration; import org.springframework.core.type.AnnotatedTypeMetadata; import org.springframework.data.redis.cache.RedisCache; import org.springframework.data.redis.cache.RedisCacheManager; import org.springframework.data.redis.cache.RedisCachePrefix; import org.springframework.data.redis.connection.Message; import org.springframework.data.redis.connection.MessageListener; import org.springframework.data.redis.connection.RedisConnectionFactory; import org.springframework.data.redis.core.RedisOperations; import org.springframework.data.redis.core.RedisTemplate; import org.springframework.data.redis.listener.PatternTopic; import org.springframework.data.redis.listener.RedisMessageListenerContainer; import org.springframework.data.redis.listener.adapter.MessageListenerAdapter; @Configuration @Conditional(StarterCacheCondition.class) public class CacheConfig { @Value("${springext.cache.redis.topic:cache}") String topicName ; @Bean public MyRedisCacheManager cacheManager(RedisTemplate<Object, Object> redisTemplate) { MyRedisCacheManager cacheManager = new MyRedisCacheManager(redisTemplate); cacheManager.setUsePrefix(true); return cacheManager; } @Bean RedisMessageListenerContainer container(RedisConnectionFactory connectionFactory, MessageListenerAdapter listenerAdapter) { RedisMessageListenerContainer container = new RedisMessageListenerContainer(); container.setConnectionFactory(connectionFactory); container.addMessageListener(listenerAdapter, new PatternTopic(topicName)); return container; } @Bean MessageListenerAdapter listenerAdapter(MyRedisCacheManager cacheManager ) { return new MessageListenerAdapter(new MessageListener(){ @Override public void onMessage(Message message, byte[] pattern) { byte[] bs = message.getChannel(); try { String type = new String(bs,"UTF-8"); cacheManager.receiver(type); } catch (UnsupportedEncodingException e) { e.printStackTrace(); // 不可能出錯 } } }); } class MyRedisCacheManager extends RedisCacheManager{ public MyRedisCacheManager(RedisOperations redisOperations) { super(redisOperations); } @SuppressWarnings("unchecked") @Override protected RedisCache createCache(String cacheName) { long expiration = computeExpiration(cacheName); return new MyRedisCache(this,cacheName, (this.isUsePrefix()? this.getCachePrefix().prefix(cacheName) : null), this.getRedisOperations(), expiration); } /** * get a messsage for update cache * @param cacheName */ public void receiver(String cacheName){ MyRedisCache cache = (MyRedisCache)this.getCache(cacheName); if(cache==null){ return ; } cache.cacheUpdate(); } //notify other redis clent to update cache( clear local cache in fact) public void publishMessage(String cacheName){ this.getRedisOperations().convertAndSend(topicName, cacheName); } } class MyRedisCache extends RedisCache{ //local cache for performace ConcurrentHashMap<Object,ValueWrapper> local = new ConcurrentHashMap<>(); MyRedisCacheManager cacheManager; public MyRedisCache(MyRedisCacheManager cacheManager,String name, byte[] prefix, RedisOperations<? extends Object, ? extends Object> redisOperations, long expiration) { super(name, prefix, redisOperations, expiration); this.cacheManager = cacheManager; } @Override public ValueWrapper get(Object key) { ValueWrapper wrapper = local.get(key); if(wrapper!=null){ return wrapper; }else{ wrapper = super.get(key); if(wrapper!=null){ local.put(key, wrapper); } return wrapper; } } @Override public void put(final Object key, final Object value) { super.put(key, value); cacheManager.publishMessage(super.getName()); } @Override public void evict(Object key) { super.evict(key); cacheManager.publishMessage(super.getName()); } @Override public ValueWrapper putIfAbsent(Object key, final Object value){ ValueWrapper wrapper = super.putIfAbsent(key, value); cacheManager.publishMessage(super.getName()); return wrapper; } public void cacheUpdate(){ //clear all cache for simplification local.clear(); } } } class StarterCacheCondition implements Condition { @Override public boolean matches(ConditionContext context, AnnotatedTypeMetadata metadata) { RelaxedPropertyResolver resolver = new RelaxedPropertyResolver( context.getEnvironment(), "springext.cache."); String env = resolver.getProperty("type"); if(env==null){ return false; } return "local2redis".equalsIgnoreCase(env.toLowerCase()); } }
代碼的核心在於spring boot提供一個概念CacheManager&Cache用來表示緩存,並提供了多達8種實現,但因爲缺乏一二級緩存,所以,須要在Redis基礎上擴展,所以實現了MyRedisCacheManger,以及MyRedisCache,增長一個本地緩存。spring
一二級緩存須要解決的的一個問題是緩存更新的時候,必須通知其餘節點的springboot應用緩存更新。這裏能夠用Redis的 Pub/Sub 功能來實現,具體能夠參考listenerAdapter方法實現。數據庫
使用的時候,須要配置以下,這樣,就可使用緩存了,性能槓槓的好緩存
springext.cache.type=local2redis # Redis服務器鏈接端口 spring.redis.host=172.16.86.56 spring.redis.port=6379