- 該項目是針對kaggle中的homesite進行的算法預測,使用xgboost的sklearn接口,進行數據建模,購買預測。
import pandas as pd
import numpy as np
import xgboost as xgb
from sklearn.model_selection import StratifiedKFold
from sklearn.model_selection import GridSearchCV
train = pd.read_csv('train.csv')
test = pd.read_csv('test.csv')
train.head()
|
QuoteNumber |
Original_Quote_Date |
QuoteConversion_Flag |
Field6 |
Field7 |
Field8 |
Field9 |
Field10 |
Field11 |
Field12 |
... |
GeographicField59A |
GeographicField59B |
GeographicField60A |
GeographicField60B |
GeographicField61A |
GeographicField61B |
GeographicField62A |
GeographicField62B |
GeographicField63 |
GeographicField64 |
0 |
1 |
2013-08-16 |
0 |
B |
23 |
0.9403 |
0.0006 |
965 |
1.0200 |
N |
... |
9 |
9 |
-1 |
8 |
-1 |
18 |
-1 |
10 |
N |
CA |
1 |
2 |
2014-04-22 |
0 |
F |
7 |
1.0006 |
0.0040 |
548 |
1.2433 |
N |
... |
10 |
10 |
-1 |
11 |
-1 |
17 |
-1 |
20 |
N |
NJ |
2 |
4 |
2014-08-25 |
0 |
F |
7 |
1.0006 |
0.0040 |
548 |
1.2433 |
N |
... |
15 |
18 |
-1 |
21 |
-1 |
11 |
-1 |
8 |
N |
NJ |
3 |
6 |
2013-04-15 |
0 |
J |
10 |
0.9769 |
0.0004 |
1,165 |
1.2665 |
N |
... |
6 |
5 |
-1 |
10 |
-1 |
9 |
-1 |
21 |
N |
TX |
4 |
8 |
2014-01-25 |
0 |
E |
23 |
0.9472 |
0.0006 |
1,487 |
1.3045 |
N |
... |
18 |
22 |
-1 |
10 |
-1 |
11 |
-1 |
12 |
N |
IL |
5 rows × 299 columnspython
train=train.drop('QuoteNumber',axis=1)
test = test.drop('QuoteNumber', axis=1)
時間格式的轉化
train['Date']=pd.to_datetime(train['Original_Quote_Date'])
train= train.drop('Original_Quote_Date',axis=1)
test['Date']=pd.to_datetime(test['Original_Quote_Date'])
test= test.drop('Original_Quote_Date',axis=1)
train['year']=train['Date'].dt.year
train['month']=train['Date'].dt.month
train['weekday']=train['Date'].dt.weekday
train.head()
|
QuoteConversion_Flag |
Field6 |
Field7 |
Field8 |
Field9 |
Field10 |
Field11 |
Field12 |
CoverageField1A |
CoverageField1B |
... |
GeographicField61A |
GeographicField61B |
GeographicField62A |
GeographicField62B |
GeographicField63 |
GeographicField64 |
Date |
year |
month |
weekday |
0 |
0 |
B |
23 |
0.9403 |
0.0006 |
965 |
1.0200 |
N |
17 |
23 |
... |
-1 |
18 |
-1 |
10 |
N |
CA |
2013-08-16 |
2013 |
8 |
4 |
1 |
0 |
F |
7 |
1.0006 |
0.0040 |
548 |
1.2433 |
N |
6 |
8 |
... |
-1 |
17 |
-1 |
20 |
N |
NJ |
2014-04-22 |
2014 |
4 |
1 |
2 |
0 |
F |
7 |
1.0006 |
0.0040 |
548 |
1.2433 |
N |
7 |
12 |
... |
-1 |
11 |
-1 |
8 |
N |
NJ |
2014-08-25 |
2014 |
8 |
0 |
3 |
0 |
J |
10 |
0.9769 |
0.0004 |
1,165 |
1.2665 |
N |
3 |
2 |
... |
-1 |
9 |
-1 |
21 |
N |
TX |
2013-04-15 |
2013 |
4 |
0 |
4 |
0 |
E |
23 |
0.9472 |
0.0006 |
1,487 |
1.3045 |
N |
8 |
13 |
... |
-1 |
11 |
-1 |
12 |
N |
IL |
2014-01-25 |
2014 |
1 |
5 |
5 rows × 301 columns算法
test['year']=test['Date'].dt.year
test['month']=test['Date'].dt.month
test['weekday']=test['Date'].dt.weekday
train = train.drop('Date', axis=1)
test = test.drop('Date', axis=1)
查看數據類型
train.dtypes
QuoteConversion_Flag int64
Field6 object
Field7 int64
Field8 float64
Field9 float64
Field10 object
Field11 float64
Field12 object
CoverageField1A int64
CoverageField1B int64
CoverageField2A int64
CoverageField2B int64
CoverageField3A int64
CoverageField3B int64
CoverageField4A int64
CoverageField4B int64
CoverageField5A int64
CoverageField5B int64
CoverageField6A int64
CoverageField6B int64
CoverageField8 object
CoverageField9 object
CoverageField11A int64
CoverageField11B int64
SalesField1A int64
SalesField1B int64
SalesField2A int64
SalesField2B int64
SalesField3 int64
SalesField4 int64
...
GeographicField50B int64
GeographicField51A int64
GeographicField51B int64
GeographicField52A int64
GeographicField52B int64
GeographicField53A int64
GeographicField53B int64
GeographicField54A int64
GeographicField54B int64
GeographicField55A int64
GeographicField55B int64
GeographicField56A int64
GeographicField56B int64
GeographicField57A int64
GeographicField57B int64
GeographicField58A int64
GeographicField58B int64
GeographicField59A int64
GeographicField59B int64
GeographicField60A int64
GeographicField60B int64
GeographicField61A int64
GeographicField61B int64
GeographicField62A int64
GeographicField62B int64
GeographicField63 object
GeographicField64 object
year int64
month int64
weekday int64
Length: 300, dtype: object
查看DataFrame的詳細信息
train.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 260753 entries, 0 to 260752
Columns: 300 entries, QuoteConversion_Flag to weekday
dtypes: float64(6), int64(267), object(27)
memory usage: 596.8+ MB
填充缺失值
train = train.fillna(-999)
test = test.fillna(-999)
category 數據類型轉化
from sklearn import preprocessing
features = list(train.columns[1:])
for i in features:
if train[i].dtype=='object':
le=preprocessing.LabelEncoder()
le.fit(list(train[i].values)+list(test[i].values))
train[i] = le.transform(list(train[i].values))
test[i] = le.transform(list(test[i].values))
模型參數設定
#brute force scan for all parameters, here are the tricks
#usually max_depth is 6,7,8
#learning rate is around 0.05, but small changes may make big diff
#tuning min_child_weight subsample colsample_bytree can have
#much fun of fighting against overfit
#n_estimators is how many round of boosting
#finally, ensemble xgboost with multiple seeds may reduce variance
xgb_model = xgb.XGBClassifier()
parameters = {'nthread':[4], #when use hyperthread, xgboost may become slower
'objective':['binary:logistic'],
'learning_rate': [0.05,0.1], #so called `eta` value
'max_depth': [6],
'min_child_weight': [11],
'silent': [1],
'subsample': [0.8],
'colsample_bytree': [0.7],
'n_estimators': [5], #number of trees, change it to 1000 for better results
'missing':[-999],
'seed': [1337]}
sfolder = StratifiedKFold(n_splits=5,random_state=42,shuffle=True)
clf= GridSearchCV(xgb_model,parameters,n_jobs=4,cv=sfolder.split(train[features], train["QuoteConversion_Flag"]),scoring='roc_auc',
verbose=2, refit=True,return_train_score=True)
clf.fit(train[features], train["QuoteConversion_Flag"])
Fitting 5 folds for each of 2 candidates, totalling 10 fits
[Parallel(n_jobs=4)]: Done 10 out of 10 | elapsed: 2.4min finished
GridSearchCV(cv=<generator object _BaseKFold.split at 0x0000000018459888>,
error_score='raise',
estimator=XGBClassifier(base_score=0.5, booster='gbtree', colsample_bylevel=1,
colsample_bytree=1, gamma=0, learning_rate=0.1, max_delta_step=0,
max_depth=3, min_child_weight=1, missing=None, n_estimators=100,
n_jobs=1, nthread=None, objective='binary:logistic', random_state=0,
reg_alpha=0, reg_lambda=1, scale_pos_weight=1, seed=None,
silent=True, subsample=1),
fit_params=None, iid=True, n_jobs=4,
param_grid={'nthread': [4], 'objective': ['binary:logistic'], 'learning_rate': [0.05, 0.1], 'max_depth': [6], 'min_child_weight': [11], 'silent': [1], 'subsample': [0.8], 'colsample_bytree': [0.7], 'n_estimators': [5], 'missing': [-999], 'seed': [1337]},
pre_dispatch='2*n_jobs', refit=True, return_train_score=True,
scoring='roc_auc', verbose=2)
clf.grid_scores_
c:\anaconda3\envs\nlp\lib\site-packages\sklearn\model_selection\_search.py:761: DeprecationWarning: The grid_scores_ attribute was deprecated in version 0.18 in favor of the more elaborate cv_results_ attribute. The grid_scores_ attribute will not be available from 0.20
DeprecationWarning)
[mean: 0.94416, std: 0.00118, params: {'colsample_bytree': 0.7, 'learning_rate': 0.05, 'max_depth': 6, 'min_child_weight': 11, 'missing': -999, 'n_estimators': 5, 'nthread': 4, 'objective': 'binary:logistic', 'seed': 1337, 'silent': 1, 'subsample': 0.8},
mean: 0.94589, std: 0.00120, params: {'colsample_bytree': 0.7, 'learning_rate': 0.1, 'max_depth': 6, 'min_child_weight': 11, 'missing': -999, 'n_estimators': 5, 'nthread': 4, 'objective': 'binary:logistic', 'seed': 1337, 'silent': 1, 'subsample': 0.8}]
pd.DataFrame(clf.cv_results_['params'])
|
colsample_bytree |
learning_rate |
max_depth |
min_child_weight |
missing |
n_estimators |
nthread |
objective |
seed |
silent |
subsample |
0 |
0.7 |
0.05 |
6 |
11 |
-999 |
5 |
4 |
binary:logistic |
1337 |
1 |
0.8 |
1 |
0.7 |
0.10 |
6 |
11 |
-999 |
5 |
4 |
binary:logistic |
1337 |
1 |
0.8 |
best_parameters, score, _ = max(clf.grid_scores_, key=lambda x: x[1])
print('Raw AUC score:', score)
for param_name in sorted(best_parameters.keys()):
print("%s: %r" % (param_name, best_parameters[param_name]))
Raw AUC score: 0.9458947562485674
colsample_bytree: 0.7
learning_rate: 0.1
max_depth: 6
min_child_weight: 11
missing: -999
n_estimators: 5
nthread: 4
objective: 'binary:logistic'
seed: 1337
silent: 1
subsample: 0.8
c:\anaconda3\envs\nlp\lib\site-packages\sklearn\model_selection\_search.py:761: DeprecationWarning: The grid_scores_ attribute was deprecated in version 0.18 in favor of the more elaborate cv_results_ attribute. The grid_scores_ attribute will not be available from 0.20
DeprecationWarning)
test_probs = clf.predict_proba(test[features])[:,1]
sample = pd.read_csv('sample_submission.csv')
sample.QuoteConversion_Flag = test_probs
sample.to_csv("xgboost_best_parameter_submission.csv", index=False)
clf.best_estimator_.predict_proba(test[features])
array([[0.6988076 , 0.3011924 ],
[0.6787684 , 0.3212316 ],
[0.6797658 , 0.32023418],
...,
[0.5018287 , 0.4981713 ],
[0.6988076 , 0.3011924 ],
[0.62464744, 0.37535256]], dtype=float32)
下面的截斷值0.5能夠本身根據實際的項目設定截斷值
kears_result=pd.read_csv('keras_nn_test.csv')
result1=[1 if i>0.5 else 0 for i in kears_result['QuoteConversion_Flag']]
xgb_result=pd.read_csv('xgboost_best_parameter_submission.csv')
result2=[1 if i>0.5 else 0 for i in xgb_result['QuoteConversion_Flag']]
from sklearn import metrics
metrics.accuracy_score(result1,result2)
0.8566004740099864
metrics.confusion_matrix(result1,result2)
array([[148836, 24862],
[ 66, 72]], dtype=int64)
結論
- 對數據的時間進行了預處理
- 對數據中的category類型進行了label化,我以爲有必要對這個進行從新考慮,我的以爲應該使用one-hot進行category的處理,而不是LabelEncoder處理(疑慮)
- Label encoding在某些狀況下頗有用,可是場景限制不少。再舉一例:好比有[dog,cat,dog,mouse,cat],咱們把其轉換爲[1,2,1,3,2]。這裏就產生了一個奇怪的現象:dog和mouse的平均值是cat。因此目前尚未發現標籤編碼的普遍使用。
- 獲得的模型對測試集進行處理,Raw AUC 0.94,而對應的準確率只有85%,實際上並無實際的分類效果,對於其實是0的,預測成1的太多了,也就是假陽性過高了,實際中的轉換率也不會很高。
- 其實模型還有不少能夠調整的參數都沒有調整,若是對調參有興趣的能夠查看美團的文本分類項目中的例子。