本期內容:node
1,Receiver啓動的方式設想ide
2,Receiver啓動源碼完全分析oop
爲何要Receiver?spa
Receiver不斷持續接收外部數據源的數據,並把數據彙報給Driver端,這樣咱們每隔BatchDuration會把彙報數據生成不一樣的Job,來執行RDD的操做。rest
Receiver是隨着應用程序的啓動而啓動的。ip
Receiver和InputDStream是一一對應的。hadoop
RDD[Receiver]只有一個Partition,一個Receiver實例。rpc
Spark Core並不知道RDD[Receiver]的特殊性,依然按照普通RDD對應的Job進行調度,就有可能在一樣一個Executor上啓動多個Receiver,會致使負載不均衡,會致使Receiver啓動失敗。get
Receiver在Executor啓動的方案:源碼
1,啓動不一樣Receiver採用RDD中不一樣Partiton的方式,不一樣的Partiton表明不一樣的Receiver,在執行層面就是不一樣的Task,在每一個Task啓動時就啓動Receiver。
這種方式實現簡單巧妙,可是存在弊端啓動可能失敗,運行過程當中Receiver失敗,會致使TaskRetry,若是3次失敗就會致使Job失敗,會致使整個Spark應用程序失敗。由於Receiver的故障,致使Job失敗,不能容錯。
2.第二種方式就是Spark Streaming採用的方式。
在ReceiverTacker的start方法中,先實例化Rpc消息通訊體ReceiverTrackerEndpoint,再調用
launchReceivers方法。
/** Start the endpoint and receiver execution thread. */ def start(): Unit = synchronized { if (isTrackerStarted) { throw new SparkException("ReceiverTracker already started") } if (!receiverInputStreams.isEmpty) { endpoint = ssc.env.rpcEnv.setupEndpoint( "ReceiverTracker", new ReceiverTrackerEndpoint(ssc.env.rpcEnv)) if (!skipReceiverLaunch) launchReceivers() logInfo("ReceiverTracker started") trackerState = Started } } |
在launchReceivers方法中,先對每個ReceiverInputStream獲取到對應的一個Receiver,而後發送StartAllReceivers消息。Receiver對應一個數據來源。
/** * Get the receivers from the ReceiverInputDStreams, distributes them to the * worker nodes as a parallel collection, and runs them. */ private def launchReceivers(): Unit = { val receivers = receiverInputStreams.map(nis => { val rcvr = nis.getReceiver() rcvr.setReceiverId(nis.id) rcvr }) runDummySparkJob() logInfo("Starting " + receivers.length + " receivers") endpoint.send(StartAllReceivers(receivers)) } |
ReceiverTrackerEndpoint接收到StartAllReceivers消息後,先找到Receiver運行在哪些Executor上,而後調用startReceiver方法。
override def receive: PartialFunction[Any, Unit] = { // Local messages case StartAllReceivers(receivers) => val scheduledLocations = schedulingPolicy.scheduleReceivers(receivers, getExecutors) for (receiver <- receivers) { val executors = scheduledLocations(receiver.streamId) updateReceiverScheduledExecutors(receiver.streamId, executors) receiverPreferredLocations(receiver.streamId) = receiver.preferredLocation startReceiver(receiver, executors) } |
startReceiver方法在Driver層面本身指定了TaskLocation,而不用Spark Core來幫咱們選擇TaskLocation。其有如下特色:終止Receiver不須要重啓Spark Job;第一次啓動Receiver,不會執行第二次;爲了啓動Receiver而啓動了一個Spark做業,一個Spark做業啓動一個Receiver。每一個Receiver啓動觸發一個Spark做業,而不是每一個Receiver是在一個Spark做業的一個Task來啓動。當提交啓動Receiver的做業失敗時發送RestartReceiver消息,來重啓Receiver。
/** * Start a receiver along with its scheduled executors */ private def startReceiver( receiver: Receiver[_], scheduledLocations: Seq[TaskLocation]): Unit = { def shouldStartReceiver: Boolean = { // It's okay to start when trackerState is Initialized or Started !(isTrackerStopping || isTrackerStopped) } val receiverId = receiver.streamId if (!shouldStartReceiver) { onReceiverJobFinish(receiverId) return } val checkpointDirOption = Option(ssc.checkpointDir) val serializableHadoopConf = new SerializableConfiguration(ssc.sparkContext.hadoopConfiguration) // Function to start the receiver on the worker node val startReceiverFunc: Iterator[Receiver[_]] => Unit = (iterator: Iterator[Receiver[_]]) => { if (!iterator.hasNext) { throw new SparkException( "Could not start receiver as object not found.") } if (TaskContext.get().attemptNumber() == 0) { val receiver = iterator.next() assert(iterator.hasNext == false) val supervisor = new ReceiverSupervisorImpl( receiver, SparkEnv.get, serializableHadoopConf.value, checkpointDirOption) supervisor.start() supervisor.awaitTermination() } else { // It's restarted by TaskScheduler, but we want to reschedule it again. So exit it. } } // Create the RDD using the scheduledLocations to run the receiver in a Spark job val receiverRDD: RDD[Receiver[_]] = if (scheduledLocations.isEmpty) { ssc.sc.makeRDD(Seq(receiver), 1) } else { val preferredLocations = scheduledLocations.map(_.toString).distinct ssc.sc.makeRDD(Seq(receiver -> preferredLocations)) } receiverRDD.setName(s"Receiver $receiverId") ssc.sparkContext.setJobDescription(s"Streaming job running receiver $receiverId") ssc.sparkContext.setCallSite(Option(ssc.getStartSite()).getOrElse(Utils.getCallSite())) val future = ssc.sparkContext.submitJob[Receiver[_], Unit, Unit]( receiverRDD, startReceiverFunc, Seq(0), (_, _) => Unit, ()) // We will keep restarting the receiver job until ReceiverTracker is stopped future.onComplete { case Success(_) => if (!shouldStartReceiver) { onReceiverJobFinish(receiverId) } else { logInfo(s"Restarting Receiver $receiverId") self.send(RestartReceiver(receiver)) } case Failure(e) => if (!shouldStartReceiver) { onReceiverJobFinish(receiverId) } else { logError("Receiver has been stopped. Try to restart it.", e) logInfo(s"Restarting Receiver $receiverId") self.send(RestartReceiver(receiver)) } }(submitJobThreadPool) logInfo(s"Receiver ${receiver.streamId} started") } |