做者 | Aaron_濤
ide
來源 | blog.csdn.net/qq_33330687/article/details/81626157函數
# 問題
在以前刷題的時候碰見一個問題,須要解決int相加後怎麼判斷是否溢出,若是溢出就返回Integer.MAX_VALUEspa
# 解決方案
JDK8已經幫咱們實現了Math下,不得不說這個方法是在StackOverflow找到了的,確實比國內一些論壇好多了~.net
加法
public static int addExact(int x, int y) { int r = x + y; // HD 2-12 Overflow iff both arguments have the opposite sign of the result if (((x ^ r) & (y ^ r)) < 0) { throw new ArithmeticException("integer overflow"); } return r; }
減法
public static int subtractExact(int x, int y) { int r = x - y; // HD 2-12 Overflow iff the arguments have different signs and // the sign of the result is different than the sign of x if (((x ^ y) & (x ^ r)) < 0) { throw new ArithmeticException("integer overflow"); } return r; }
乘法
public static int multiplyExact(int x, int y) { long r = (long)x * (long)y; if ((int)r != r) { throw new ArithmeticException("integer overflow"); } return (int)r; }
注意 long和int是不同的code
public static long multiplyExact(long x, long y) { long r = x * y; long ax = Math.abs(x); long ay = Math.abs(y); if (((ax | ay) >>> 31 != 0)) { // Some bits greater than 2^31 that might cause overflow // Check the result using the divide operator // and check for the special case of Long.MIN_VALUE * -1 if (((y != 0) && (r / y != x)) || (x == Long.MIN_VALUE && y == -1)) { throw new ArithmeticException("long overflow"); } } return r; }
如何使用?
直接調用是最方便的,可是爲了追求速度,應該修改一下,理解判斷思路,由於異常是十分耗時的操做,無腦異常有可能超時blog
# 寫這個的目的
總結一下,也方便告訴他人Java幫咱們寫好了函數。ip