文章目錄網絡
skip-gram pytorch 樸素實現
網絡結構
訓練過程:使用nn.NLLLoss()
batch的準備,爲unsupervised,準備數據獲取(center,contex)的pair:
採樣時的優化:Subsampling下降高頻詞的機率
skip-gram 進階:negative sampling
通常都是針對計算效率優化的方法:negative sampling和hierachical softmax
negative sampling實現:
negative sampling原理:
negative sampling抽樣方法:
negative sampling前向傳遞過程:
negative sampling訓練過程:
skip-gram pytorch 樸素實現app
網絡結構dom
class SkipGram(nn.Module):
def __init__(self, n_vocab, n_embed):
super().__init__()
self.embed = nn.Embedding(n_vocab, n_embed)
self.output = nn.Linear(n_embed, n_vocab)
self.log_softmax = nn.LogSoftmax(dim=1)
def forward(self, x):
x = self.embed(x)
scores = self.output(x)
log_ps = self.log_softmax(scores)
return log_pside
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
訓練過程:使用nn.NLLLoss()優化
# check if GPU is available
device = 'cuda' if torch.cuda.is_available() else 'cpu'this
embedding_dim=300 # you can change, if you wantorm
model = SkipGram(len(vocab_to_int), embedding_dim).to(device)
criterion = nn.NLLLoss()
optimizer = optim.Adam(model.parameters(), lr=0.003)ip
print_every = 500
steps = 0
epochs = 5ci
# train for some number of epochs
for e in range(epochs):
# get input and target batches
for inputs, targets in get_batches(train_words, 512):
steps += 1
inputs, targets = torch.LongTensor(inputs), torch.LongTensor(targets)
inputs, targets = inputs.to(device), targets.to(device)
log_ps = model(inputs)
loss = criterion(log_ps, targets)
optimizer.zero_grad()
loss.backward()
optimizer.step()rem
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
batch的準備,爲unsupervised,準備數據獲取(center,contex)的pair:
def get_target(words, idx, window_size=5):
''' Get a list of words in a window around an index. '''
R = np.random.randint(1, window_size+1)
start = idx - R if (idx - R) > 0 else 0
stop = idx + R
target_words = words[start:idx] + words[idx+1:stop+1]
return list(target_words)
def get_batches(words, batch_size, window_size=5):
''' Create a generator of word batches as a tuple (inputs, targets) '''
n_batches = len(words)//batch_size
# only full batches
words = words[:n_batches*batch_size]
for idx in range(0, len(words), batch_size):
x, y = [], []
batch = words[idx:idx+batch_size]
for ii in range(len(batch)):
batch_x = batch[ii]
batch_y = get_target(batch, ii, window_size)
y.extend(batch_y)
x.extend([batch_x]*len(batch_y))
yield x, y
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
採樣時的優化:Subsampling下降高頻詞的機率
Words that show up often such as 「the」, 「of」, and 「for」 don’t provide much context to the nearby words. If we discard some of them, we can remove some of the noise from our data and in return get faster training and better representations. This process is called subsampling by Mikolov. For each word wi w_iw
i
in the training set, we’ll discard it with probability given by
P(wi)=1−tf(wi)−−−−√ P(w_i) = 1 - \sqrt{\frac{t}{f(w_i)}}
P(w
i
)=1−
f(w
i
)
t
where t tt is a threshold parameter and f(wi) f(w_i)f(w
i
) is the frequency of word wi w_iw
i
in the total dataset.
from collections import Counter
import random
import numpy as np
threshold = 1e-5
word_counts = Counter(int_words)
#print(list(word_counts.items())[0]) # dictionary of int_words, how many times they appear
total_count = len(int_words)
freqs = {word: count/total_count for word, count in word_counts.items()}
p_drop = {word: 1 - np.sqrt(threshold/freqs[word]) for word in word_counts}
# discard some frequent words, according to the subsampling equation
# create a new list of words for training
train_words = [word for word in int_words if random.random() < (1 - p_drop[word])]
1
2
3
4
5
6
7
8
9
10
11
12
13
14
skip-gram 進階:negative sampling
通常都是針對計算效率優化的方法:negative sampling和hierachical softmax
negative sampling實現:
negative sampling原理:
class NegativeSamplingLoss(nn.Module):
def __init__(self):
super().__init__()
def forward(self, input_vectors, output_vectors, noise_vectors):
batch_size, embed_size = input_vectors.shape
# Input vectors should be a batch of column vectors
input_vectors = input_vectors.view(batch_size, embed_size, 1)
# Output vectors should be a batch of row vectors
output_vectors = output_vectors.view(batch_size, 1, embed_size)
# bmm = batch matrix multiplication
# correct log-sigmoid loss
out_loss = torch.bmm(output_vectors, input_vectors).sigmoid().log()
out_loss = out_loss.squeeze()
# incorrect log-sigmoid loss
noise_loss = torch.bmm(noise_vectors.neg(), input_vectors).sigmoid().log()
noise_loss = noise_loss.squeeze().sum(1) # sum the losses over the sample of noise vectors
# negate and sum correct and noisy log-sigmoid losses
# return average batch loss
return -(out_loss + noise_loss).mean()
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
negative sampling抽樣方法:
# Get our noise distribution
# Using word frequencies calculated earlier in the notebook
word_freqs = np.array(sorted(freqs.values(), reverse=True))
unigram_dist = word_freqs/word_freqs.sum()
noise_dist = torch.from_numpy(unigram_dist**(0.75)/np.sum(unigram_dist**(0.75)))
1
2
3
4
5
6
7
negative sampling前向傳遞過程:
class SkipGramNeg(nn.Module):
def __init__(self, n_vocab, n_embed, noise_dist=None):
super().__init__()
self.n_vocab = n_vocab
self.n_embed = n_embed
self.noise_dist = noise_dist
# define embedding layers for input and output words
self.in_embed = nn.Embedding(n_vocab, n_embed)
self.out_embed = nn.Embedding(n_vocab, n_embed)
# Initialize embedding tables with uniform distribution
# I believe this helps with convergence
self.in_embed.weight.data.uniform_(-1, 1)
self.out_embed.weight.data.uniform_(-1, 1)
def forward_input(self, input_words):
input_vectors = self.in_embed(input_words)
return input_vectors
def forward_output(self, output_words):
output_vectors = self.out_embed(output_words)
return output_vectors
def forward_noise(self, batch_size, n_samples):
""" Generate noise vectors with shape (batch_size, n_samples, n_embed)"""
if self.noise_dist is None:
# Sample words uniformly
noise_dist = torch.ones(self.n_vocab)
else:
noise_dist = self.noise_dist
# Sample words from our noise distribution
noise_words = torch.multinomial(noise_dist,
batch_size * n_samples,
replacement=True)
device = "cuda" if model.out_embed.weight.is_cuda else "cpu"
noise_words = noise_words.to(device)
noise_vectors = self.out_embed(noise_words).view(batch_size, n_samples, self.n_embed)
return noise_vectors
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
negative sampling訓練過程:
device = 'cuda' if torch.cuda.is_available() else 'cpu'
# Get our noise distribution
# Using word frequencies calculated earlier in the notebook
word_freqs = np.array(sorted(freqs.values(), reverse=True))
unigram_dist = word_freqs/word_freqs.sum()
noise_dist = torch.from_numpy(unigram_dist**(0.75)/np.sum(unigram_dist**(0.75)))
# instantiating the model
embedding_dim = 300
model = SkipGramNeg(len(vocab_to_int), embedding_dim, noise_dist=noise_dist).to(device)
# using the loss that we defined
criterion = NegativeSamplingLoss()
optimizer = optim.Adam(model.parameters(), lr=0.003)
print_every = 1500
steps = 0
epochs = 5
# train for some number of epochs
for e in range(epochs):
# get our input, target batches
for input_words, target_words in get_batches(train_words, 512):
steps += 1
inputs, targets = torch.LongTensor(input_words), torch.LongTensor(target_words)
inputs, targets = inputs.to(device), targets.to(device)
# input, output, and noise vectors
input_vectors = model.forward_input(inputs)
output_vectors = model.forward_output(targets)
noise_vectors = model.forward_noise(inputs.shape[0], 5)
# negative sampling loss
loss = criterion(input_vectors, output_vectors, noise_vectors)
optimizer.zero_grad() loss.backward() optimizer.step()