spark yarn任務的executor 無端 timeout之緣由分析

問題:oop

         用  spark-submit --master yarn --deploy-mode cluster --driver-memory 2G --num-executors 6 --executor-memory 2G ~~~測試

提交任務時,最後一個executor 執行時間 超過了 160s 致使 timeout而退出,形成任務從新執行形成用時過長。具體請看下面介紹:spa

17/01/13 09:13:08 WARN spark.HeartbeatReceiver: Removing executor 5 with no recent heartbeats: 161684 ms exceeds timeout 120000 ms
17/01/13 09:13:08 ERROR cluster.YarnClusterScheduler: Lost executor 5 on slave10: Executor heartbeat timed out after 161684 ms
17/01/13 09:13:08 WARN scheduler.TaskSetManager: Lost task 0.0 in stage 0.0 (TID 0, slave10): ExecutorLostFailure (executor 5 exited caused by one of the running tasks) Reason: Executor heartbeat timed out after 161684 ms
17/01/13 09:13:08 INFO scheduler.DAGScheduler: Executor lost: 5 (epoch 0)
17/01/13 09:13:08 INFO cluster.YarnClusterSchedulerBackend: Requesting to kill executor(s) 5
17/01/13 09:13:08 INFO scheduler.TaskSetManager: Starting task 0.1 in stage 0.0 (TID 5, slave06, partition 0,RACK_LOCAL, 8029 bytes)
17/01/13 09:13:08 INFO storage.BlockManagerMasterEndpoint: Trying to remove executor 5 from BlockManagerMaster.
17/01/13 09:13:08 INFO storage.BlockManagerMasterEndpoint: Removing block manager BlockManagerId(5, slave10, 34439)
17/01/13 09:13:08 INFO storage.BlockManagerMaster: Removed 5 successfully in removeExecutor
17/01/13 09:13:08 INFO scheduler.DAGScheduler: Host added was in lost list earlier: slave10
17/01/13 09:13:08 INFO yarn.ApplicationMaster$AMEndpoint: Driver requested to kill executor(s) 5.
17/01/13 09:13:08 INFO scheduler.TaskSetManager: Finished task 0.1 in stage 0.0 (TID 5) in 367 ms on slave06 (5/5)
17/01/13 09:13:08 INFO scheduler.DAGScheduler: ResultStage 0 (saveAsNewAPIHadoopFile at DataFrameFunctions.scala:55) finished in 162.495 s

 


初步估計是 由於最後一步用到的計算多,可是 spark的堆外內存配置低 以下所示
spark.yarn.executor.memoryOverhead executorMemory * 0.10, with minimum of 384

 

故加大配置,以下:spark-submit --master yarn --deploy-mode cluster --driver-memory 2G --num-executors 6 --executor-memory 2G --conf spark.yarn.executor.memoryOverhead=512 --conf spark.yarn.driver.memoryOverhead=512經測試上述問題不復存在! 
相關文章
相關標籤/搜索