JavaShuo
欄目
標籤
Cross-Modulation Networks For Few-Shot Learning
時間 2021-01-12
原文
原文鏈接
作者是在基於度量的學習的模型基礎上,通過Cross-Modulation方法將每個抽象級別的support and query examples 整合,從而達到更好的預測表現。 方法 論文的核心方法是將Feature-wise Linear Modulation(FiLM)方法引入到度量學習中,關於FiLM的思想和具體實現可查閱原論文,這裏就簡單介紹下。 FiLM 將一種條件決定的面向特徵的仿射變
>>阅读原文<<
相關文章
1.
Machine Learning for Communication Networks
2.
(Fewshot detection)Review:RepMet: Representative-based metric learning for few-shot detection
3.
Learning Convolutional Neural Networks for Graphs
4.
metapath2vec: Scalable Representation Learning for Heterogeneous Networks
5.
Matching Networks for One Shot Learning
6.
Prototypical Networks for Few-shot Learning
7.
Cross-stitch Networks for Multi-task Learning
8.
A Critical Review of Recurrent Neural Networks for Sequence Learning
9.
論文閱讀 Prototypical Networks for Few-shot Learning
10.
neuron networks for machine learning coursera課程筆記
更多相關文章...
•
Swift for 循環
-
Swift 教程
•
Scala for循環
-
Scala教程
•
Java Agent入門實戰(三)-JVM Attach原理與使用
•
Java Agent入門實戰(一)-Instrumentation介紹與使用
相關標籤/搜索
networks
learning
Deep Learning
Meta-learning
Learning Perl
for...of
69.for
for..loop
while&&for
for..of
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
Appium入門
2.
Spring WebFlux 源碼分析(2)-Netty 服務器啓動服務流程 --TBD
3.
wxpython入門第六步(高級組件)
4.
CentOS7.5安裝SVN和可視化管理工具iF.SVNAdmin
5.
jedis 3.0.1中JedisPoolConfig對象缺少setMaxIdle、setMaxWaitMillis等方法,問題記錄
6.
一步一圖一代碼,一定要讓你真正徹底明白紅黑樹
7.
2018-04-12—(重點)源碼角度分析Handler運行原理
8.
Spring AOP源碼詳細解析
9.
Spring Cloud(1)
10.
python簡單爬去油價信息發送到公衆號
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
Machine Learning for Communication Networks
2.
(Fewshot detection)Review:RepMet: Representative-based metric learning for few-shot detection
3.
Learning Convolutional Neural Networks for Graphs
4.
metapath2vec: Scalable Representation Learning for Heterogeneous Networks
5.
Matching Networks for One Shot Learning
6.
Prototypical Networks for Few-shot Learning
7.
Cross-stitch Networks for Multi-task Learning
8.
A Critical Review of Recurrent Neural Networks for Sequence Learning
9.
論文閱讀 Prototypical Networks for Few-shot Learning
10.
neuron networks for machine learning coursera課程筆記
>>更多相關文章<<