因爲centos6.x中的gcc版本老舊,不支持c++11因此要安裝gcc4.8.5,如下是安裝教程。參考CentOS 6.4 編譯安裝 gcc-4.8.0
解壓安裝包進入目錄執行download_prerequisites腳本./contrib/download_prerequisites
新建buildmkdir build
進入build目錄執行html
../configure -enable-checking=release -enable-languages=c,c++ -disable-multilib(生成Makefile文件)
修改Makefile文件中prefix=安裝路徑,這裏的安裝路徑是/home/guanjun/caffe_lib/third/gcc-4.8.5
注意本文如下的安裝路徑都是/home/guanjun/caffe_lib/third
下的對應目錄python
make -j32 make install
安裝完成後要將gcc4.8.5中bin目錄添加到環境變量(臨時建立env_caffe.sh)
在env_caffe.sh中添加linux
export PATH=/home/guanjun/caffe_lib/third/gcc-4.8.5/bin:$PATH
執行安裝文件
./Anaconda2-4.2.0-Linux-x86_64.sh
注意在提示的最後的選項選no即不添加到.bashrc
以後一樣在env_caffe.sh中添加export PATH=/home/guanjun/anaconda2/bin:$PATH
以後執行下面的命令
source ~/env_caffe.sh
由於編譯boost時會用到python環境c++
解壓安裝包而後執行git
./bootstrap.sh ./b2 install --prefix=安裝路徑
參考boost Installationgithub
解壓安裝包而後進入安裝包執行shell
mkdir build cd build ccmake ../
按照提示加載配置文件(按c)、修改cmake_install_prefix路徑爲安裝路徑、
將WITH CUDA WITH CUFFT WITH JASPER
分別設置爲off,按照提示保存退出(按c 按g),而後執行bootstrap
make -j32 make install
解壓而後依次執行ubuntu
./configure --prefix=安裝路徑 make -j32 make intstall
解壓而後進入解壓文件依次執行centos
mkdir build cd build export CXXFLAGS="-fPIC" ccmake ../
按c加載配置文件、設置安裝路徑按c g退出,以後執行
make -j32 make install
首先下載lmdb安裝包執行git clone https://github.com/LMDB/lmdb
打開lmdb中MakeFile文件、修改安裝路徑
make -j make install
下載新版OpenBLASgit clone https://github.com/xianyi/OpenBLAS
進入OpenBLAS打開目錄中cpuid.h文件在倒數第二行添加#define NO_AVX2 1024
而後執行
make -j32 make install PREFIX=安裝路徑
解壓、進入文件執行
./configure --prefix=安裝路徑 make -j32 make install
解壓、進入文件執行
./configure --prefix=安裝路徑 make -j32 make install
以後將protobuf添加到環境變量中(env_caffe.sh)export PATH=/home/guanjun/caffe_lib/third/protobuf/bin:$PATH
在編譯caffe前確保env_caffe.sh文件以下
export PATH=/home/guanjun/caffe_lib/third/gcc-4.8.5/bin:/home/guanjun/anaconda2/bin:/home/guanjun/caffe_lib/third/protobuf/bin:$PATH export PYTHONPATH=/home/guanjun/caffe/py-R-FCN/caffe/python:$PYTHONPATH export LD_LIBRARY_PATH=/home/guanjun/caffe_lib/third_source/leveldb/out-shared:/home/guanjun/anaconda2/lib:/usr/local/cuda/lib64:/home/guanjun/caffe_lib/third/boost/lib:/home/guanjun/caffe_lib/third/hdf5/lib:/home/guanjun/caffe_lib/third/lmdb/lib:/home/guanjun/caffe_lib/third/openblas_v1/lib:/home/guanjun/caffe_lib/third/opencv/lib:/home/guanjun/caffe_lib/third/protobuf/lib:/home/guanjun/caffe_lib/third/glog/lib:/home/guanjun/caffe_lib/third/gflags/lib:/home/guanjun/caffe_lib/third/glibc-2.14/lib:/home/guanjun/caffe_lib/third/gcc-4.8.5/lib64:$LD_LIBRARY_PATH
/home/guanjun/
替換成/home/你的用戶名/
同時,保證caffe中的Makefile.config和下面的配置文件同樣
# Refer to http://caffe.berkeleyvision.org/installation.html # Contributions simplifying and improving our build system are welcome! # cuDNN acceleration switch (uncomment to build with cuDNN). USE_CUDNN := 1 D_PATH := /home/guanjun/caffe_lib/third # CPU-only switch (uncomment to build without GPU support). #CPU_ONLY := 1 # uncomment to disable IO dependencies and corresponding data layers # USE_OPENCV := 0 USE_LEVELDB := 0 # USE_LMDB := 0 # uncomment to allow MDB_NOLOCK when reading LMDB files (only if necessary) # You should not set this flag if you will be reading LMDBs with any # possibility of simultaneous read and write # ALLOW_LMDB_NOLOCK := 1 # Uncomment if you're using OpenCV 3 # OPENCV_VERSION := 3 # To customize your choice of compiler, uncomment and set the following. # N.B. the default for Linux is g++ and the default for OSX is clang++ # CUSTOM_CXX := g++ # CUDA directory contains bin/ and lib/ directories that we need. CUDA_DIR := /usr/local/cuda # On Ubuntu 14.04, if cuda tools are installed via # "sudo apt-get install nvidia-cuda-toolkit" then use this instead: # CUDA_DIR := /usr # CUDA architecture setting: going with all of them. # For CUDA < 6.0, comment the *_50 lines for compatibility. #CUDA_ARCH := -gencode arch=compute_20,code=sm_20 # -gencode arch=compute_20,code=sm_21 CUDA_ARCH := -gencode arch=compute_30,code=sm_30 \ -gencode arch=compute_35,code=sm_35 \ -gencode arch=compute_50,code=sm_50 \ -gencode arch=compute_50,code=compute_50 # BLAS choice: # atlas for ATLAS (default) # mkl for MKL # open for OpenBlas # BLAS := atlas BLAS := open # Custom (MKL/ATLAS/OpenBLAS) include and lib directories. # Leave commented to accept the defaults for your choice of BLAS # (which should work)! BLAS_INCLUDE := /home/guanjun/caffe_lib/third/openblas_v1/include BLAS_LIB := /home/guanjun/caffe_lib/third/openblas_v1/lib # Homebrew puts openblas in a directory that is not on the standard search path # BLAS_INCLUDE := $(shell brew --prefix openblas)/include # BLAS_LIB := $(shell brew --prefix openblas)/lib # This is required only if you will compile the matlab interface. # MATLAB directory should contain the mex binary in /bin. # MATLAB_DIR := /usr/local # MATLAB_DIR := /Applications/MATLAB_R2012b.app # NOTE: this is required only if you will compile the python interface. # We need to be able to find Python.h and numpy/arrayobject.h. #PYTHON_INCLUDE := /usr/include/python2.7 \ /usr/lib/python2.7/dist-packages/numpy/core/include # Anaconda Python distribution is quite popular. Include path: # Verify anaconda location, sometimes it's in root. ANACONDA_HOME := /home/guanjun/anaconda2 PYTHON_INCLUDE := $(ANACONDA_HOME)/include \ $(ANACONDA_HOME)/include/python2.7 \ $(ANACONDA_HOME)/lib/python2.7/site-packages/numpy/core/include \ # Uncomment to use Python 3 (default is Python 2) # PYTHON_LIBRARIES := boost_python3 python3.5m # PYTHON_INCLUDE := /usr/include/python3.5m \ # /usr/lib/python3.5/dist-packages/numpy/core/include # We need to be able to find libpythonX.X.so or .dylib. #PYTHON_LIB := /usr/lib PYTHON_LIB := $(ANACONDA_HOME)/lib # Homebrew installs numpy in a non standard path (keg only) # PYTHON_INCLUDE += $(dir $(shell python -c 'import numpy.core; print(numpy.core.__file__)'))/include # PYTHON_LIB += $(shell brew --prefix numpy)/lib # Uncomment to support layers written in Python (will link against Python libs) WITH_PYTHON_LAYER := 1 # Whatever else you find you need goes here. INCLUDE_DIRS := $(D_PATH)/protobuf/include #INCLUDE_DIRS := /data/shiyang/anaconda2/include INCLUDE_DIRS += $(D_PATH)/hdf5/include INCLUDE_DIRS += $(D_PATH)/gflags/include INCLUDE_DIRS += $(D_PATH)/glog/include INCLUDE_DIRS += $(D_PATH)/opencv/include INCLUDE_DIRS += $(D_PATH)/boost/include INCLUDE_DIRS += $(D_PATH)/lmdb/include INCLUDE_DIRS += $(D_PATH)/glibc-2.14/include INCLUDE_DIRS += $(D_PATH)/gcc-4.8.5/include INCLUDE_DIRS += /home/guanjun/caffe_lib/third_source/leveldb/include LIBRARY_DIRS := $(D_PATH)/protobuf/lib #LIBRARY_DIRS := /data/shiyang/anaconda2/lib LIBRARY_DIRS += $(D_PATH)/hdf5/lib LIBRARY_DIRS += $(D_PATH)/gflags/lib LIBRARY_DIRS += $(D_PATH)/glog/lib LIBRARY_DIRS += $(D_PATH)/opencv/lib LIBRARY_DIRS += $(D_PATH)/boost/lib LIBRARY_DIRS += $(D_PATH)/lmdb/lib LIBRARY_DIRS += $(D_PATH)/glibc-2.14/lib LIBRARY_DIRS += $(D_PATH)/gcc-4.8.5/lib64 LIBRARY_DIRS += /home/guanjun/caffe_lib/third_source/leveldb/out-shared INCLUDE_DIRS += $(PYTHON_INCLUDE) /usr/local/include LIBRARY_DIRS += $(PYTHON_LIB) /usr/local/lib /usr/lib # If Homebrew is installed at a non standard location (for example your home directory) and you use it for general dependencies # INCLUDE_DIRS += $(shell brew --prefix)/include # LIBRARY_DIRS += $(shell brew --prefix)/lib # Uncomment to use `pkg-config` to specify OpenCV library paths. # (Usually not necessary -- OpenCV libraries are normally installed in one of the above $LIBRARY_DIRS.) # USE_PKG_CONFIG := 1 # N.B. both build and distribute dirs are cleared on `make clean` BUILD_DIR := build DISTRIBUTE_DIR := distribute # Uncomment for debugging. Does not work on OSX due to https://github.com/BVLC/caffe/issues/171 #DEBUG := 1 # The ID of the GPU that 'make runtest' will use to run unit tests. TEST_GPUID := 0 # enable pretty build (comment to see full commands) #Q ?= @
以後執行source ~/env_caffe.sh
進入caffe目錄執行
make -j32 make runtest make pycaffe
將caffe的python添加到環境變量export PYTHONPATH=/home/guanjun/caffe/py-R-FCN/caffe/python:$PYTHONPATH
就是env_caffe.sh中的第二行。
新建一個python文件測試import caffe
是否可用。
先把錯配的顯卡驅動清理乾淨
sudo apt-get --purge remove nvidia-*
到https://developer.nvidia.com/cuda-downloads下載對應的deb文件(cuda-repo-ubuntu1604-8-0-local-ga2_8.0.61-1_amd64.deb)
到deb的下載目錄下
sudo dpkg -i cuda-repo-ubuntu1604-8-0-local-ga2_8.0.61-1_amd64.deb sudo apt-get update sudo apt-get install cuda sudo reboot
參考ubuntu 14.04 如今安裝cuda7.5超級簡便,驚了
安裝依賴
sudo apt-get install -y opencl-headers build-essential protobuf-compiler \ libprotoc-dev libboost-all-dev libleveldb-dev hdf5-tools libhdf5-serial-dev \ libopencv-core-dev libopencv-highgui-dev libsnappy-dev \ libatlas-base-dev cmake libstdc++6-4.8-dbg libgoogle-glog0v5 libgoogle-glog-dev \ libgflags-dev liblmdb-dev git python-pip gfortran libopencv-dev sudo apt-get clean
下載caffe並安裝caffe python依賴
git clone https://github.com/BVLC/caffe.git cd caffe cd python for req in $(cat requirements.txt); do sudo pip install $req; done
準備Makefile.config,以便它能夠ubuntu上構建
cd ../ cp Makefile.config.example Makefile.config
修改Makefile.config以下
## Refer to http://caffe.berkeleyvision.org/installation.html # Contributions simplifying and improving our build system are welcome! # cuDNN acceleration switch (uncomment to build with cuDNN). USE_CUDNN := 1 # CPU-only switch (uncomment to build without GPU support). # CPU_ONLY := 1 # uncomment to disable IO dependencies and corresponding data layers # USE_OPENCV := 0 USE_LEVELDB := 1 # USE_LMDB := 0 # uncomment to allow MDB_NOLOCK when reading LMDB files (only if necessary) # You should not set this flag if you will be reading LMDBs with any # possibility of simultaneous read and write # ALLOW_LMDB_NOLOCK := 1 # Uncomment if you're using OpenCV 3 # OPENCV_VERSION := 3 # To customize your choice of compiler, uncomment and set the following. # N.B. the default for Linux is g++ and the default for OSX is clang++ # CUSTOM_CXX := g++ # CUDA directory contains bin/ and lib/ directories that we need. CUDA_DIR := /usr/local/cuda # On Ubuntu 14.04, if cuda tools are installed via # "sudo apt-get install nvidia-cuda-toolkit" then use this instead: # CUDA_DIR := /usr # CUDA architecture setting: going with all of them. # For CUDA < 6.0, comment the *_50 lines for compatibility. CUDA_ARCH := -gencode arch=compute_30,code=sm_30 \ -gencode arch=compute_35,code=sm_35 \ -gencode arch=compute_50,code=sm_50 \ -gencode arch=compute_50,code=compute_50 # BLAS choice: # atlas for ATLAS (default) # mkl for MKL # open for OpenBlas BLAS := open # Custom (MKL/ATLAS/OpenBLAS) include and lib directories. # Leave commented to accept the defaults for your choice of BLAS # (which should work)! # BLAS_INCLUDE := /path/to/your/blas # BLAS_LIB := /path/to/your/blas # Homebrew puts openblas in a directory that is not on the standard search path # BLAS_INCLUDE := $(shell brew --prefix openblas)/include # BLAS_LIB := $(shell brew --prefix openblas)/lib # This is required only if you will compile the matlab interface. # MATLAB directory should contain the mex binary in /bin. # MATLAB_DIR := /usr/local # MATLAB_DIR := /Applications/MATLAB_R2012b.app # NOTE: this is required only if you will compile the python interface. # We need to be able to find Python.h and numpy/arrayobject.h. #PYTHON_INCLUDE := /usr/include/python2.7 \ /usr/lib/python2.7/dist-packages/numpy/core/include # Anaconda Python distribution is quite popular. Include path: # Verify anaconda location, sometimes it's in root. ANACONDA_HOME := /home/guan/anaconda2 PYTHON_INCLUDE := $(ANACONDA_HOME)/include \ $(ANACONDA_HOME)/include/python2.7 \ $(ANACONDA_HOME)/lib/python2.7/site-packages/numpy/core/include \ # Uncomment to use Python 3 (default is Python 2) # PYTHON_LIBRARIES := boost_python3 python3.5m # PYTHON_INCLUDE := /usr/include/python3.5m \ # /usr/lib/python3.5/dist-packages/numpy/core/include # We need to be able to find libpythonX.X.so or .dylib. #PYTHON_LIB := /usr/lib PYTHON_LIB := $(ANACONDA_HOME)/lib # Homebrew installs numpy in a non standard path (keg only) # PYTHON_INCLUDE += $(dir $(shell python -c 'import numpy.core; print(numpy.core.__file__)'))/include # PYTHON_LIB += $(shell brew --prefix numpy)/lib # Uncomment to support layers written in Python (will link against Python libs) WITH_PYTHON_LAYER := 1 # Whatever else you find you need goes here. INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include /usr/include/hdf5/serial/ LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib /usr/lib/x86_64-linux-gnu /usr/lib/x86_64-linux-gnu/hdf5/serial/ # If Homebrew is installed at a non standard location (for example your home directory) and you use it for general dependencies # INCLUDE_DIRS += $(shell brew --prefix)/include # LIBRARY_DIRS += $(shell brew --prefix)/lib # Uncomment to use `pkg-config` to specify OpenCV library paths. # (Usually not necessary -- OpenCV libraries are normally installed in one of the above $LIBRARY_DIRS.) USE_PKG_CONFIG := 1 # N.B. both build and distribute dirs are cleared on `make clean` BUILD_DIR := build DISTRIBUTE_DIR := distribute # Uncomment for debugging. Does not work on OSX due to https://github.com/BVLC/caffe/issues/171 # DEBUG := 1 # The ID of the GPU that 'make runtest' will use to run unit tests. TEST_GPUID := 0 # enable pretty build (comment to see full commands) Q ?= @
注意修改路徑。
執行
make all -j make runtest make pycaffe
執行echo "export PYTHONPATH=/opt/cat-dogs/repo/caffe/python:$PYTHONPATH" >> ~/.bashrc
這句也能夠不添加到.bashrc,能夠本身寫個env_caffe.sh每次用caffe的時候source env_caffe.sh
錯誤
.build_release/src/caffe/proto/caffe.pb.h:12:2: error: #error This file was generated by a newer version of protoc which is
解決方法下載新版本的、編譯安裝
sudo apt-get install autoconf automake libtool git clone https://github.com/google/protobuf ./autogen.sh ./configure make make check sudo make install
錯誤
/usr/include/boost/python/detail/wrap_python.hpp:50:23: fatal error: pyconfig.h: No such file or directory
解決方法
export CPLUS_INCLUDE_PATH=/usr/include/python2.7 make clean make all -j2
錯誤
fatal error: caffe/proto/caffe.pb.h: No such file or directory
解決方法
protoc src/caffe/proto/caffe.proto --cpp_out=. mkdir include/caffe/proto mv src/caffe/proto/caffe.pb.h include/caffe/proto
錯誤
.build_release/tools/caffe: error while loading shared libraries: libprotobuf.so.14: cannot open shared object file: No such file or directory Makefile:526: recipe for target 'runtest' failed
解決方法添加連接路徑
export LD_LIBRARY_PATH=/usr/local/lib/
錯誤
No module named google.protobuf.internal
解決方法
/home/guan/anaconda2/bin/pip install protobuf
錯誤
/home/guan/anaconda2/bin/../lib/libstdc++.so.6: version `GLIBCXX_3.4.21' not found
解決方法
conda install libgcc
錯誤
No module named google.protobuf.internal
解決方法
/home/guan/anaconda2/bin/pip install protobuf
錯誤
src/caffe/test/test_gradient_based_solver.cpp:373: Failure The difference between expected_updated_weight and solver_updated_weight is 1.7136335372924805e-07, which exceeds error_margin, where expected_updated_weight evaluates to 9.6857547760009766e-06, solver_updated_weight evaluates to 9.8571181297302246e-06, and error_margin evaluates to 1.0000000116860974e-07. [ FAILED ] NesterovSolverTest/2.TestNesterovLeastSquaresUpdateWithEverything, where TypeParam = caffe::GPUDevice<float> (6484 ms)
解決方法
執行export CUDA_VISIBLE_DEVICES=0
,從新執行測試。
參考runtest出現的問題