<dependency> <groupId>org.springframework.kafka</groupId> <artifactId>spring-kafka</artifactId> <version>1.1.1.RELEASE</version> </dependency>
#============== kafka =================== kafka.consumer.bootstrap-servers=10.93.21.21:9092 kafka.consumer.enable.auto.commit=true kafka.consumer.session.timeout=6000 kafka.consumer.auto.commit.interval=100 kafka.consumer.auto.offset.reset=latest kafka.consumer.topic=test kafka.consumer.group.id=test kafka.consumer.concurrency=10 kafka.producer.compression-type=lz4 kafka.producer.servers=10.93.21.21:9092 kafka.producer.retries=0 kafka.producer.batch.size=4096 kafka.producer.linger=1 kafka.producer.buffer.memory=40960
1)經過@Configuration、@EnableKafka,聲明Config而且打開KafkaTemplate能力。java
2)經過@Value注入application.properties配置文件中的kafka配置。web
3)生成bean,@Beanspring
import java.util.HashMap; import java.util.Map; import org.apache.kafka.clients.producer.ProducerConfig; import org.apache.kafka.common.serialization.StringSerializer; import org.springframework.beans.factory.annotation.Value; import org.springframework.context.annotation.Bean; import org.springframework.context.annotation.Configuration; import org.springframework.kafka.annotation.EnableKafka; import org.springframework.kafka.core.DefaultKafkaProducerFactory; import org.springframework.kafka.core.KafkaTemplate; import org.springframework.kafka.core.ProducerFactory; @Configuration @EnableKafka public class KafkaProducerConfig { @Value("${kafka.producer.servers}") private String servers; @Value("${kafka.producer.retries}") private int retries; @Value("${kafka.producer.batch.size}") private int batchSize; @Value("${kafka.producer.linger}") private int linger; @Value("${kafka.producer.buffer.memory}") private int bufferMemory; public Map<String, Object> producerConfigs() { Map<String, Object> props = new HashMap<>(); props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, servers); props.put(ProducerConfig.RETRIES_CONFIG, retries); props.put(ProducerConfig.BATCH_SIZE_CONFIG, batchSize); props.put(ProducerConfig.LINGER_MS_CONFIG, linger); props.put(ProducerConfig.BUFFER_MEMORY_CONFIG, bufferMemory); props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class); props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.class); return props; } public ProducerFactory<String, String> producerFactory() { return new DefaultKafkaProducerFactory<>(producerConfigs()); } @Bean public KafkaTemplate<String, String> kafkaTemplate() { return new KafkaTemplate<String, String>(producerFactory()); } }
寫一個Controller。想topic=test,key=key,發送消息messageapache
import com.kangaroo.sentinel.common.response.Response; import com.kangaroo.sentinel.common.response.ResultCode; import org.slf4j.Logger; import org.slf4j.LoggerFactory; import org.springframework.beans.factory.annotation.Autowired; import org.springframework.kafka.core.KafkaTemplate; import org.springframework.web.bind.annotation.*; import javax.servlet.http.HttpServletRequest; import javax.servlet.http.HttpServletResponse; @RestController @RequestMapping("/kafka") public class CollectController { protected final Logger logger = LoggerFactory.getLogger(this.getClass()); @Autowired private KafkaTemplate kafkaTemplate; @RequestMapping(value = "/send", method = RequestMethod.GET) public Response sendKafka(HttpServletRequest request, HttpServletResponse response) { try { String message = request.getParameter("message"); logger.info("kafka的消息={}", message); kafkaTemplate.send("test", "key", message); logger.info("發送kafka成功."); return new Response(ResultCode.SUCCESS, "發送kafka成功", null); } catch (Exception e) { logger.error("發送kafka失敗", e); return new Response(ResultCode.EXCEPTION, "發送kafka失敗", null); } } }
消費者bootstrap
1)經過@Configuration、@EnableKafka,聲明Config而且打開KafkaTemplate能力。springboot
2)經過@Value注入application.properties配置文件中的kafka配置。session
3)生成bean,@Bean併發
import org.apache.kafka.clients.consumer.ConsumerConfig; import org.apache.kafka.common.serialization.StringDeserializer; import org.springframework.beans.factory.annotation.Value; import org.springframework.context.annotation.Bean; import org.springframework.context.annotation.Configuration; import org.springframework.kafka.annotation.EnableKafka; import org.springframework.kafka.config.ConcurrentKafkaListenerContainerFactory; import org.springframework.kafka.config.KafkaListenerContainerFactory; import org.springframework.kafka.core.ConsumerFactory; import org.springframework.kafka.core.DefaultKafkaConsumerFactory; import org.springframework.kafka.listener.ConcurrentMessageListenerContainer; import java.util.HashMap; import java.util.Map; @Configuration @EnableKafka public class KafkaConsumerConfig { @Value("${kafka.consumer.servers}") private String servers; @Value("${kafka.consumer.enable.auto.commit}") private boolean enableAutoCommit; @Value("${kafka.consumer.session.timeout}") private String sessionTimeout; @Value("${kafka.consumer.auto.commit.interval}") private String autoCommitInterval; @Value("${kafka.consumer.group.id}") private String groupId; @Value("${kafka.consumer.auto.offset.reset}") private String autoOffsetReset; @Value("${kafka.consumer.concurrency}") private int concurrency; @Bean public KafkaListenerContainerFactory<ConcurrentMessageListenerContainer<String, String>> kafkaListenerContainerFactory() { ConcurrentKafkaListenerContainerFactory<String, String> factory = new ConcurrentKafkaListenerContainerFactory<>(); factory.setConsumerFactory(consumerFactory()); factory.setConcurrency(concurrency); factory.setBatchListener(true); factory.getContainerProperties().setPollTimeout(1500); return factory; } public ConsumerFactory<String, String> consumerFactory() { return new DefaultKafkaConsumerFactory<>(consumerConfigs()); } public Map<String, Object> consumerConfigs() { Map<String, Object> propsMap = new HashMap<>(); propsMap.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, servers); propsMap.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, enableAutoCommit); propsMap.put(ConsumerConfig.AUTO_COMMIT_INTERVAL_MS_CONFIG, autoCommitInterval); propsMap.put(ConsumerConfig.SESSION_TIMEOUT_MS_CONFIG, sessionTimeout); propsMap.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class); propsMap.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class); propsMap.put(ConsumerConfig.GROUP_ID_CONFIG, groupId); propsMap.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, autoOffsetReset); propsMap.put(ConsumerConfig.MAX_POLL_RECORDS_CONFIG, 50); return propsMap; } }
Listener簡單的實現demo以下:只是簡單的讀取並打印key和message值app
@KafkaListener中topics屬性用於指定kafka topic名稱,topic名稱由消息生產者指定,也就是由kafkaTemplate在發送消息時指定。this
import org.apache.kafka.clients.consumer.ConsumerRecord; import org.slf4j.Logger; import org.slf4j.LoggerFactory; import org.springframework.kafka.annotation.KafkaListener; public class Listener { protected final Logger logger = LoggerFactory.getLogger(this.getClass()); @KafkaListener(topics = {"test"}) public void listen(ConsumerRecord<?, ?> record) { logger.info("kafka的key: " + record.key()); logger.info("kafka的value: " + record.value().toString()); } }
springboot 消費kafka
併發消費。咱們使用的是ConcurrentKafkaListenerContainerFactory而且設置了factory.setConcurrency(4); (topic有4個分區,爲了加快消費將併發設置爲4,也就是有4個KafkaMessageListenerContainer)
批量消費。factory.setBatchListener(true); 以及 propsMap.put(ConsumerConfig.MAX_POLL_RECORDS_CONFIG, 50); 一個設啓用批量消費,一個設置批量消費每次最多消費多少條消息記錄。重點說明一下,咱們設置的ConsumerConfig.MAX_POLL_RECORDS_CONFIG是50,並非說若是沒有達到50條消息,咱們就一直等待。官方的解釋是」The maximum number of records returned in a single call to poll().」, 也就是50表示的是一次poll最多返回的記錄數。 每間隔max.poll.interval.ms咱們就調用一次poll。每次poll最多返回50條記錄。
分區消費。對於只有一個分區的topic,不須要分區消費,由於沒有意義。下面的例子是針對有2個分區的狀況(個人完整代碼中有4個listenPartitionX方法,個人topic設置了4個分區),讀者能夠根據本身的狀況進行調整。
public class MyListener { private static final String TPOIC = "topic02"; @KafkaListener(id = "id0", topicPartitions = { @TopicPartition(topic = TPOIC, partitions = { "0" }) }) public void listenPartition0(List<ConsumerRecord<?, ?>> records) { log.info("Id0 Listener, Thread ID: " + Thread.currentThread().getId()); log.info("Id0 records size " + records.size()); for (ConsumerRecord<?, ?> record : records) { Optional<?> kafkaMessage = Optional.ofNullable(record.value()); log.info("Received: " + record); if (kafkaMessage.isPresent()) { Object message = record.value(); String topic = record.topic(); log.info("p0 Received message={}", message); } } } @KafkaListener(id = "id1", topicPartitions = { @TopicPartition(topic = TPOIC, partitions = { "1" }) }) public void listenPartition1(List<ConsumerRecord<?, ?>> records) { log.info("Id1 Listener, Thread ID: " + Thread.currentThread().getId()); log.info("Id1 records size " + records.size()); for (ConsumerRecord<?, ?> record : records) { Optional<?> kafkaMessage = Optional.ofNullable(record.value()); log.info("Received: " + record); if (kafkaMessage.isPresent()) { Object message = record.value(); String topic = record.topic(); log.info("p1 Received message={}", message); } } }
若是咱們的topic有多個分區,通過以上步驟能夠很好的加快消息消費。若是隻有一個分區,由於已經有一個同名group id在消費了,因此只會有一個在消費數據,另外一個不消費數據,可是能夠做爲從節點,一旦主節點掛了,從節點就能夠開始消費數據。