JavaScript手寫數據結構(鏈表,BST,堆)

如下代碼所有原創手寫。node

1、鏈表

非遞歸實現:數組

class Node {
  constructor(value, next) {
    this.value = value;
    this.next = next;
  }
}

class LinkedList{
  constructor() {
    this.dummyHead = new Node(null, null);
    this.size = 0;
  }

  //在指定索引處插入一個Node類型的節點
  add(index, newNode) {
    if(index > this.size || index < 0)  
      throw new Error('索引非法');
    let pre = this.dummyHead;
    for(let i = 0; i < index; i++) {
      pre = pre.next;
    }
    newNode.next = pre.next;
    pre.next = newNode;
    this.size++;
  }

  //在鏈表頭增長節點
  addFirst(newNode) {
    this.add(0, newNode);
  }

  //在鏈表尾增長節點
  addLast(newNode) {
    this.add(size, newNode);
  }

  //刪除一個索引爲index的節點
  remove(index) {
    if(index >= this.size || index < 0)  
      throw new Error('索引非法');
    let pre = this.dummyHead;
    for (let i = 0; i < index; i++) {
      pre = pre.next;
    }
    let delNode = pre.next;
    pre.next = delNode.next;
    delNode.next = null;
    this.size--;
  }

  removeFirst() {
    this.remove(0);
  }

  removeLast() {
    this.remove(this.size - 1);
  }

  //刪除值爲value的節點
  removeElement(value) {
    let pre = this.dummyHead;
    //找到待刪除節點的前一個節點
    while (pre.next != null) {
      if (pre.next.value == value) 
        break;
      pre = pre.next;
    }
    if (pre.next != null) {
      let cur = pre.next;
      pre.next = cur.next;
      cur.next = null;
      this.size--;
      return cur;
    }
    return null;
  }

  contains(value) {
    let cur = this.dummyHead.next;
    while(cur != null) {
      if(cur.value === value) {
        return true;
      }
      cur = cur.next;
    }
    return false; 
  }

  getSize() {
    return this.size;
  }

  isEmpty() {
    return this.size == 0;
  }

  toString() {
    let cur = this.dummyHead.next;
    let str = "";
    while (cur != null){
      str += cur.value + "->";
      cur = cur.next;
    }
    str += "null";
    return str;
  }
}

function test() {
  let n1 = new Node(1, null);
  let n2 = new Node(4, null);
  let n3 = new Node(3, null);
  let n4 = new Node(2, null);

  let list = new LinkedList();
  list.addFirst(n1);
  list.addFirst(n2);
  list.addFirst(n3);
  list.addFirst(n4);

  console.log("鏈表初始化:",  list.toString());
  
  list.remove(3);
  console.log("刪除第3個元素後爲:",  list.toString());


  list.removeElement(3);
  console.log("刪除值爲3的元素後爲:", list.toString());

  console.log("鏈表元素個數:", list.getSize());
}

test();
複製代碼

測試結果:函數

下面是遞歸方法的實現,會有一些繞,可是並非太難理解,但願你們耐心看下來:post

class Node {
  constructor(value, next) {
    this.value = value;
    this.next = next;
  }
}

class LinkedList{
  constructor() {
    this.dummyHead = new Node(null, null);
    this.size = 0;
  }

  //在指定索引處插入一個Node類型的節點,遞歸寫法
  add(index, newNode) {
    if(index > this.size || index < 0)  
      throw new Error('索引非法');
    let pre = this.dummyHead;
    pre.next = this._add(index, pre.next, newNode, 0);
    this.size++;
  }

  _add(index, cur, newNode, depth) {
    //遞歸深度達到索引值時,即當前的cur指向第index個元素時,咱們作一些處理
    //讓函數返回插入的節點,即讓第index-1個元素的next指向了要插入的節點,如下遞歸寫法均爲同理
    if (index == depth) {
      newNode.next = cur;
      return newNode;
    }
    cur.next = this._add(index, cur.next, newNode, depth + 1);
    return cur;
  }

  //在鏈表頭增長節點
  addFirst(newNode) {
    this.add(0, newNode);
  }

  //在鏈表尾增長節點
  addLast(newNode) {
    this.add(size, newNode);
  }

  //刪除一個索引爲index的節點,遞歸寫法
  remove(index) {
    if(index >= this.size || index < 0)  
      throw new Error('索引非法');
    let pre = this.dummyHead;
    pre.next = this._remove(index, pre.next, 0);
    this.size--;
  }

  _remove(index, cur, depth) {
    if (index === depth) {
      let nextNode = cur.next;
      cur.next = null;
      return nextNode;
    }
    cur.next = this._remove(index, cur.next, depth + 1);
    return cur;
  }

  removeFirst() {
    this.remove(0);
  }

  removeLast() {
    this.remove(this.size - 1);
  }

  //刪除值爲value的節點, 遞歸寫法
  removeElement(value) {
    let pre = this.dummyHead;
    pre.next = this._removeElement(pre.next, value);   
  }

  _removeElement(cur, value) {
    if(cur.value === value) {
      let nextNode = cur.next;
      cur.next = null;
      this.size--;
      return nextNode;
    }
    cur.next = this._removeElement(cur.next, value);
    return cur;
  }

  contains(value) {
    let cur = this.dummyHead.next;
    while(cur != null) {
      if(cur.value === value) {
        return true;
      }
      cur = cur.next;
    }
    return false; 
  }

  getSize() {
    return this.size;
  }

  isEmpty() {
    return this.size == 0;
  }

  toString() {
    let cur = this.dummyHead.next;
    let str = "";
    while (cur != null){
      str += cur.value + "->";
      cur = cur.next;
    }
    str += "null";
    return str;
  }
}

function test() {
  let n1 = new Node(1, null);
  let n2 = new Node(4, null);
  let n3 = new Node(3, null);
  let n4 = new Node(2, null);

  let list = new LinkedList();
  list.addFirst(n1);
  list.addFirst(n2);
  list.addFirst(n3);
  list.addFirst(n4);

  console.log("鏈表初始化:",  list.toString());
  
  list.remove(3);
  console.log("刪除第3個元素後爲:",  list.toString());


  list.removeElement(3);
  console.log("刪除值爲3的元素後爲:", list.toString());

  console.log("鏈表元素個數:", list.getSize());
}

test();
複製代碼

測試結果:測試

能夠看到,遞歸方法的結果和非遞歸是徹底同樣的,說明遞歸的實現沒有問題。ui

2、二分搜索樹(Binary Search Tree)

在二分搜索樹中,任何的節點的值大於左孩子節點,並且小於右孩子節點。this

如今來實現其中全部的方法,其中三種順序的遍歷都有遞歸和非遞歸的方式:spa

class Node{
  constructor(value, left, right) {
    this.value = value;
    this.left = left || null;
    this.right = right || null;
    this.isVisited = false;
  }
}

class BST{
  constructor() {
    this.root = null;
    this.size = 0;
  }

  getSize() {
    return this.size;
  }

  isEmpty() {
    return this.size === 0;
  }

  add(value) {
    this.root = this._add(this.root, value);
  }

  _add(node, value) {
    if(node == null) {
      let newNode = new Node(value);
      this.size++;
      return newNode;
    }
    if(value < node.value)
      node.left = this._add(node.left, value);
    if(value > node.value)
      node.right = this._add(node.right, value);
    //等於的狀況不作處理
    return node;
  }

  contains(value) {
    return this._contains(this.root, value);
  }

  _contains(node, value) {
    if(node == null) 
      return false;
    if(value < node.value)
      return this._contains(node.left, value);
    else if(value > node.value)
      return this._contains(node.right, value);
    else if(value === node.value)
      return true;
  }

  //先序遍歷 遞歸方式
  preOrder() {
    this._preOrder(this.root);
  }

  _preOrder(node) {
    if(node == null)
      return;
    console.log(node.value);
    this._preOrder(node.left);
    this._preOrder(node.right);
  }

  //先序遍歷 非遞歸方式
  preOrderNR() {
    //這裏須要用到棧,js數組的push和pop就能知足
    let stack = [];
    let p = this.root;
    while(!stack.length || p != null) {
      while(p != null) {
        stack.push(p);
        console.log(p.value);
        p = p.left;
      }
      let q = stack.pop();
      p = q.right;
    }
  }

  //中序遍歷 遞歸方式
  inOrder() {
    this._inOrder(this.root);
  }

  _inOrder(node) {
    if(node == null)
      return;
    this._inOrder(node.left);
    console.log(node.value);
    this._inOrder(node.right);
  }
  
  //中序遍歷 非遞歸方式
  inOrderNR() {
    //這裏一樣須要用到棧,js數組的push和pop就能知足
    let stack = [];
    let p = this.root;
    while(stack.length  || p != null) {
      while(p != null) {
        stack.push(p);
        p = p.left;
      }
      let q = stack.pop();
      console.log(q.value);
      p = q.right;
    }
  }

  //後序遍歷 遞歸方式
  postOrder() {
    this._postOrder(this.root);
  }
  _postOrder(node) {
    if(node == null)
      return;
    this._inOrder(node.left);
    this._inOrder(node.right);
    console.log(node.value);
  }

  //後序遍歷 非遞歸方式
  postOrderNR() {
    //這裏一樣也須要用到棧,js數組的push和pop就能知足
    let stack = [];
    let p = this.root;
    while(stack.length  || p != null) {
      while(p != null) {
        stack.push(p);
        p = p.left;
      }
      //拿到棧頂元素
      let peek = stack[stack.length - 1];
      if(peek.right != null && !peek.right.isVisited) 
        p = peek.right;
      else{
        let q = stack.pop();
        console.log(q.value);
        q.isVisited = true;
      }
    }
  }

  //層序遍歷
  levelOrder() {
    //須要用到隊列,用js數組的shift和push就能知足
    let queue = [];
    queue.push(this.root);
    while(queue.length) {
      let cur = queue.shift();
      console.log(cur.value);
      if(cur.left != null)
        queue.push(cur.left);
      if(cur.right != null)
        queue.push(cur.right);
    }
  }

  //找到BST節點中的最小值
  minimum() {
    return this._minimum(this.root).value;
  }

  _minimum(node) {
    if(node.left == null) {
      return node;
    } 
    return this._minimum(node.left);
  }

  maximum() {
    return this._maximum(this.root).value;
  }

  _maximum(node) {
    if(node.right == null) {
      return node;
    }
    return this._maximum(node.right);
  }

  removeMin() {
    let ret = this.minimum(this.root);
    this.root = this._removeMin(this.root);
    return ret;
  }

  _removeMin(node) {
    if(node.left == null) {
      let right = node.right;
      node.right = null;
      this.size--;
      return right;
    }
    node.left = this._removeMin(node.left);
    return node;
  }

  removeMax() {
    let ret = this.maximum(this.root);
    this.root = this._removeMax(this.root);
    return ret;
  }

  _removeMax(node) {
    if(node.right == null) {
      let left = node.left;
      node.left = null;
      this.size--;
      return left;
    }
    node.right = this._removeMax(node.right);
    return node;
  }

  remove(value) {
    this.root = this._remove(this.root, value);
    return value;
  }

  _remove(node, value) {
    if(value <node.value) {
      node.left = this._remove(node.left);
      return node;
    } else if(value > node.value){
      node.right = this._remove(node.right);
      return node;
    } else {
      //要開始刪除了
      if(node.left == null) {
        let right = node.right;
        node.right = null;
        this.size--;
        return right;
      } 
      if(node.right == null) {
        let left = node.left;
        node.left = null;
        this.size--;
        return left;
      }
      //最小的後繼節點
      let successor = this._minimum(node.right);
      successor.right = this._removeMin(node.right);
      successor.left = node.left;
      node.left = node.right = null;
      this.size--;
      return successor;
    }
  }

  toString() {
    this._generateBST(this.root, 0);
  }
  //先序遍歷打印樹的結構
  _generateBST(node, depth){
    if(node == null){
      console.log(this._generateDepthString(depth), "null");
      return;
    }
    console.log(this._generateDepthString(depth), node.value);
    this._generateBST(node.left, depth+1);
    this._generateBST(node.right, depth+1);
  }
  _generateDepthString(depth) {
    let str = "";
    for(let i = 0; i < depth; i++) {
      str += "--"
    }
    return str;
  }
} 

function test() {
  let bst = new BST();
  bst.add(2);

  bst.add(6);
  bst.add(5);
  bst.add(3);
  bst.add(7);

  // console.log("先序遍歷");
  // bst.preOrder();
  // bst.preOrderNR();

  // console.log("中序遍歷");
  // bst.inOrder();
  // bst.inOrderNR();

  // console.log("後序遍歷");
  // bst.postOrder();
  // bst.postOrderNR();

  // console.log("層序遍歷");
  // bst.levelOrder();

  // console.log("最大值", bst.maximum());
  // console.log("最小值", bst.minimum());

  // console.log(bst.contains(2));//true

  // console.log(bst.removeMin());

  // console.log(bst.removeMax());

  console.log(bst.remove(6));
  bst.toString();
}
test();
複製代碼

三、基於堆實現優先隊列

堆的結構實現以下:debug

class MaxHeap{
  constructor(arr = [], compare = null) {
    this.data = arr;
    this.size = arr.length;
    this.compare = compare || function(a, b){return a - b > 0};
  }
  getSize() {
    return this.size;
  }
  isEmpty() {
    return this.size === 0;
  }
  _swap(i, j) {
    [this.data[i], this.data[j]] = [this.data[j], this.data[i]];
  }
  _parent(index) {
    return Math.floor((index - 1) / 2); 
  }
  _leftChild(index) {
    return 2 * index + 1;
  }
  _rightChild(index) {
    return 2 * index + 2;
  }
  _siftUp(k) {
    while(k > 0 && this.data[k] > this.data[this._parent(k)]){
      this._swap(k, this._parent(k));
      k = this._parent(k);
    }
  }
  _siftDown(k) {
    while(this._leftChild(k) < this.size) {
      let j = this._leftChild(k);
      debugger;
      if(this._rightChild(k) < this.size && 
        this.compare(this.data[this._rightChild(k)], this.data[j])){
          j++;
      }
      if(this.data[k] >= this.data[j])
        return;
      this._swap(k, j);
      k = j;
    }
  }
  //增長元素
  add(value) {
    this.data.push(value);
    this.size++;
    this._siftUp(this.getSize() - 1);
  }

  findMax() {
    if(this.getSize() === 0)
      return;
    return this.data[0]; 
  }

  extractMax() {
    let ret = this.findMax();
    this._swap(0, this.getSize() - 1);
    this.data.pop();
    this.size--;
    this._siftDown(0);
    return ret;
  }

  toString() {
    console.log(this.data);
  }
}
module.exports = MaxHeap;
複製代碼

所謂優先隊列,就是每次出隊的時候,老是出隊列中權值最高的元素。code

如今能夠用堆來輕易地實現:

const MaxHeap = require('./maxHeap');

class PriorityQueue {
  constructor() {
    this.maxHeap = new MaxHeap();
  }

  getSize() {
    return this.maxHeap.getSize();
  }

  isEmpty() {
    return this.maxHeap.isEmpty();
  }

  getFront() {
    return this.maxHeap.findMax();
  }

  enqueue(e) {
    return this.maxHeap.add(e);
  }

  dequeue() {
    return this.maxHeap.extractMax();
  }
}

let pq = new PriorityQueue();
pq.enqueue(1);
pq.enqueue(3);
pq.enqueue(6);
pq.enqueue(2);
pq.enqueue(62);
console.log(pq.dequeue());
複製代碼
相關文章
相關標籤/搜索