1.對Java集合(Collections)的加強支持javascript
在JDK1.7以前的版本中,Java集合容器中存取元素的形式以下:html
以List、Set、Map集合容器爲例:java
在JDK1.7中,摒棄了Java集合接口的實現類,如:ArrayList、HashSet和HashMap。而是直接採用[]、{}的形式存入對象,採用[]的形式按照索引、鍵值來獲取集合中的對象,以下:程序員
2.在Switch中可用String數據庫
在以前的版本中是不支持在Switch語句塊中用String類型的數據的,這個功能在C#語言中早已被支持,好在JDK1.7中加入了。編程
3.數值可加下劃線c#
例如:int one_million = 1_000_000;windows
4.支持二進制文字api
例如:int binary = 0b1001_1001;數組
5.簡化了可變參數方法的調用
當程序員試圖使用一個不可具體化的可變參數並調用一個*varargs* (可變)方法時,編輯器會生成一個「非安全操做」的警告。「Java is still not dead—and people are starting to figure that out.」
本教程將用帶註釋的簡單代碼來描述新特性,你將看不到大片嚇人的文字。
1、接口的默認方法
Java 8容許咱們給接口添加一個非抽象的方法實現,只須要使用 default關鍵字便可,這個特徵又叫作擴展方法,示例以下:
default double sqrt(int a) {
return Math.sqrt(a);
}
}
formula.calculate(100); // 100.0
formula.sqrt(16); // 4.0
譯者注: 在Java中只有單繼承,若是要讓一個類賦予新的特性,一般是使用接口來實現,在C++中支持多繼承,容許一個子類同時具備多個父類的接口與功能,在其餘 語言中,讓一個類同時具備其餘的可複用代碼的方法叫作mixin。新的Java 8 的這個特新在編譯器實現的角度上來講更加接近Scala的trait。 在C#中也有名爲擴展方法的概念,容許給已存在的類型擴展方法,和Java 8的這個在語義上有差異。
2、Lambda 表達式
首先看看在老版本的Java中是如何排列字符串的:
Collections.sort(names, new Comparator<String>() {
@Override
public int compare(String a, String b) {
return b.compareTo(a);
}
});
在Java 8 中你就不必使用這種傳統的匿名對象的方式了,Java 8提供了更簡潔的語法,lambda表達式:
咱們能夠將lambda表達式看成任意只包含一個抽象方法的接口類型,確保你的接口必定達到這個要求,你只須要給你的接口添加 @FunctionalInterface 註解,編譯器若是發現你標註了這個註解的接口有多於一個抽象方法的時候會報錯的。
示例以下:
譯者注 將lambda表達式映射到一個單方法的接口上,這種作法在Java 8以前就有別的語言實現,好比Rhino JavaScript解釋器,若是一個函數參數接收一個單方法的接口而你傳遞的是一個function,Rhino 解釋器會自動作一個單接口的實例到function的適配器,典型的應用場景有 org.w3c.dom.events.EventTarget 的addEventListener 第二個參數 EventListener。
4、方法與構造函數引用
前一節中的代碼還能夠經過靜態方法引用來表示:
Person() {}
Person(String firstName, String lastName) {
this.firstName = firstName;
this.lastName = lastName;
}
}
5、Lambda 做用域
在lambda表達式中訪問外層做用域和老版本的匿名對象中的方式很類似。你能夠直接訪問標記了final的外層局部變量,或者實例的字段以及靜態變量。
6、訪問局部變量
咱們能夠直接在lambda表達式中訪問外層的局部變量:
stringConverter.convert(2); // 3
stringConverter.convert(2); // 3
和本地變量不一樣的是,lambda內部對於實例的字段以及靜態變量是便可讀又可寫。該行爲和匿名對象是一致的:
void testScopes() {
Converter<Integer, String> stringConverter1 = (from) -> {
outerNum = 23;
return String.valueOf(from);
};
Converter<Integer, String> stringConverter2 = (from) -> {
outerStaticNum = 72;
return String.valueOf(from);
};
}
}
Predicate 接口只有一個參數,返回boolean類型。該接口包含多種默認方法來將Predicate組合成其餘複雜的邏輯(好比:與,或,非):
predicate.test("foo"); // true
predicate.negate().test("foo"); // false
Predicate<Boolean> nonNull = Objects::nonNull;
Predicate<Boolean> isNull = Objects::isNull;
Predicate<String> isEmpty = String::isEmpty;
Predicate<String> isNotEmpty = isEmpty.negate();
Function 接口有一個參數而且返回一個結果,並附帶了一些能夠和其餘函數組合的默認方法(compose, andThen):
backToString.apply("123"); // "123"
Person p1 = new Person("John", "Doe");
Person p2 = new Person("Alice", "Wonderland");
comparator.compare(p1, p2); // > 0
comparator.reversed().compare(p1, p2); // < 0
Optional 不是函數是接口,這是個用來防止NullPointerException異常的輔助類型,這是下一屆中將要用到的重要概念,如今先簡單的看看這個接口能幹什麼:
Optional 被定義爲一個簡單的容器,其值多是null或者不是null。在Java 8以前通常某個函數應該返回非空對象可是偶爾卻可能返回了null,而在Java 8中,不推薦你返回null而是返回Optional。
optional.isPresent(); // true
optional.get(); // "bam"
optional.orElse("fallback"); // "bam"
optional.ifPresent((s) -> System.out.println(s.charAt(0))); // "b"
java.util.Stream 表示能應用在一組元素上一次執行的操做序列。Stream 操做分爲中間操做或者最終操做兩種,最終操做返回一特定類型的計算結果,而中間操做返回Stream自己,這樣你就能夠將多個操做依次串起來。 Stream 的建立須要指定一個數據源,好比 java.util.Collection的子類,List或者Set, Map不支持。Stream的操做能夠串行執行或者並行執行。
首先看看Stream是怎麼用,首先建立實例代碼的用到的數據List:
Filter 過濾
過濾經過一個predicate接口來過濾並只保留符合條件的元素,該操做屬於中間操做,因此咱們能夠在過濾後的結果來應用其餘Stream操做 (好比forEach)。forEach須要一個函數來對過濾後的元素依次執行。forEach是一個最終操做,因此咱們不能在forEach以後來執行 其餘Stream操做。
// "aaa2", "aaa1"
排序是一箇中間操做,返回的是排序好後的Stream。若是你不指定一個自定義的Comparator則會使用默認排序。
// "aaa1", "aaa2"
// "DDD2", "DDD1", "CCC", "BBB3", "BBB2", "AAA2", "AAA1"
Stream提供了多種匹配操做,容許檢測指定的Predicate是否匹配整個Stream。全部的匹配操做都是最終操做,並返回一個boolean類型的值。
System.out.println(anyStartsWithA); // true
boolean allStartsWithA =
stringCollection
.stream()
.allMatch((s) -> s.startsWith("a"));
System.out.println(allStartsWithA); // false
boolean noneStartsWithZ =
stringCollection
.stream()
.noneMatch((s) -> s.startsWith("z"));
System.out.println(noneStartsWithZ); // true
Count 計數
計數是一個最終操做,返回Stream中元素的個數,返回值類型是long。
System.out.println(startsWithB); // 3
這是一個最終操做,容許經過指定的函數來說stream中的多個元素規約爲一個元素,規越後的結果是經過Optional接口表示的:
reduced.ifPresent(System.out::println);
// "aaa1#aaa2#bbb1#bbb2#bbb3#ccc#ddd1#ddd2"
前面提到過Stream有串行和並行兩種,串行Stream上的操做是在一個線程中依次完成,而並行Stream則是在多個線程上同時執行。
下面的例子展現了是如何經過並行Stream來提高性能:
首先咱們建立一個沒有重複元素的大表:
long count = values.stream().sorted().count();
System.out.println(count);
long t1 = System.nanoTime();
long millis = TimeUnit.NANOSECONDS.toMillis(t1 - t0);
System.out.println(String.format("sequential sort took: %d ms", millis));
// 串行耗時: 899 ms
並行排序:
long count = values.parallelStream().sorted().count();
System.out.println(count);
long t1 = System.nanoTime();
long millis = TimeUnit.NANOSECONDS.toMillis(t1 - t0);
System.out.println(String.format("parallel sort took: %d ms", millis));
// 並行排序耗時: 472 ms
上面兩個代碼幾乎是同樣的,可是並行版的快了50%之多,惟一須要作的改動就是將stream()改成parallelStream()。
Map
前面提到過,Map類型不支持stream,不過Map提供了一些新的有用的方法來處理一些平常任務。
for (int i = 0; i < 10; i++) {
map.putIfAbsent(i, "val" + i);
}
map.forEach((id, val) -> System.out.println(val));
以上代碼很容易理解, putIfAbsent 不須要咱們作額外的存在性檢查,而forEach則接收一個Consumer接口來對map裏的每個鍵值對進行操做。
下面的例子展現了map上的其餘有用的函數:
map.computeIfPresent(9, (num, val) -> null);
map.containsKey(9); // false
map.computeIfAbsent(23, num -> "val" + num);
map.containsKey(23); // true
map.computeIfAbsent(3, num -> "bam");
map.get(3); // val33
map.remove(3, "val33");
map.get(3); // null
map.merge(9, "concat", (value, newValue) -> value.concat(newValue));
map.get(9); // val9concat
9、Date API
Java 8 在包java.time下包含了一組全新的時間日期API。新的日期API和開源的Joda-Time庫差很少,但又不徹底同樣,下面的例子展現了這組新API裏最重要的一些部分:
Clock 時鐘
Clock類提供了訪問當前日期和時間的方法,Clock是時區敏感的,能夠用來取代 System.currentTimeMillis() 來獲取當前的微秒數。某一個特定的時間點也可使用Instant類來表示,Instant類也能夠用來建立老的java.util.Date對象。
Instant instant = clock.instant();
Date legacyDate = Date.from(instant); // legacy java.util.Date
在新API中時區使用ZoneId來表示。時區能夠很方便的使用靜態方法of來獲取到。 時區定義了到UTS時間的時間差,在Instant時間點對象到本地日期對象之間轉換的時候是極其重要的。
ZoneId zone1 = ZoneId.of("Europe/Berlin");
ZoneId zone2 = ZoneId.of("Brazil/East");
System.out.println(zone1.getRules());
System.out.println(zone2.getRules());
// ZoneRules[currentStandardOffset=+01:00]
// ZoneRules[currentStandardOffset=-03:00]
LocalTime 定義了一個沒有時區信息的時間,例如 晚上10點,或者 17:30:15。下面的例子使用前面代碼建立的時區建立了兩個本地時間。以後比較時間並以小時和分鐘爲單位計算兩個時間的時間差:
System.out.println(now1.isBefore(now2)); // false
long hoursBetween = ChronoUnit.HOURS.between(now1, now2);
long minutesBetween = ChronoUnit.MINUTES.between(now1, now2);
System.out.println(hoursBetween); // -3
System.out.println(minutesBetween); // -239
DateTimeFormatter germanFormatter =
DateTimeFormatter
.ofLocalizedTime(FormatStyle.SHORT)
.withLocale(Locale.GERMAN);
LocalTime leetTime = LocalTime.parse("13:37", germanFormatter);
System.out.println(leetTime); // 13:37
LocalDate 本地日期
LocalDate 表示了一個確切的日期,好比 2014-03-11。該對象值是不可變的,用起來和LocalTime基本一致。下面的例子展現瞭如何給Date對象加減天/月/年。另外要注意的是這些對象是不可變的,操做返回的老是一個新實例。
LocalDate independenceDay = LocalDate.of(2014, Month.JULY, 4);
DayOfWeek dayOfWeek = independenceDay.getDayOfWeek();
LocalDate xmas = LocalDate.parse("24.12.2014", germanFormatter);
System.out.println(xmas); // 2014-12-24
LocalDateTime 同時表示了時間和日期,至關於前兩節內容合併到一個對象上了。LocalDateTime和LocalTime還有LocalDate同樣,都是不可變的。LocalDateTime提供了一些能訪問具體字段的方法。
DayOfWeek dayOfWeek = sylvester.getDayOfWeek();
System.out.println(dayOfWeek); // WEDNESDAY
Month month = sylvester.getMonth();
System.out.println(month); // DECEMBER
long minuteOfDay = sylvester.getLong(ChronoField.MINUTE_OF_DAY);
System.out.println(minuteOfDay); // 1439
Date legacyDate = Date.from(instant);
System.out.println(legacyDate); // Wed Dec 31 23:59:59 CET 2014
LocalDateTime parsed = LocalDateTime.parse("Nov 03, 2014 - 07:13", formatter);
String string = formatter.format(parsed);
System.out.println(string); // Nov 03, 2014 - 07:13
10、Annotation 註解
在Java 8中支持多重註解了,先看個例子來理解一下是什麼意思。
首先定義一個包裝類Hints註解用來放置一組具體的Hint註解:
@Repeatable(Hints.class)
@interface Hint {
String value();
}
例 1: 使用包裝類當容器來存多個註解(老方法)
Hints hints1 = Person.class.getAnnotation(Hints.class);
System.out.println(hints1.value().length); // 2
Hint[] hints2 = Person.class.getAnnotationsByType(Hint.class);
System.out.println(hints2.length); // 2