JavaShuo
欄目
標籤
Assisted Excitation of Activations:A Learning Technique to Improve Object Detectors論文解讀
時間 2020-12-23
標籤
目標檢測論文解讀
简体版
原文
原文鏈接
Assisted Excitation of Activations:A Learning Technique to Improve Object Detectors 這是cvpr2019上的一篇文章,以yolo爲例,沒有修改網絡結構,也沒有增加額外的計算負擔。 (1)目的:解決yolo定位不準確和樣本不均勻的問題。 (2)改進點:在訓練階段加入Assisted Excitation(AE)模塊,
>>阅读原文<<
相關文章
1.
Assisted Excitation of Activations: A Learning Technique to Improve Object Detect
2.
Incremental Learning of Object Detectors without Catastrophic Forgetting 論文閱讀
3.
Incremental Learning of Object Detectors without Catastrophic Forgetting詳解
4.
DSOD: Learning Deeply Supervised Object Detectors from Scratch 論文解讀
5.
論文閱讀:Learning to Segment Object Candidates(DeepMask)
6.
How To Improve Deep Learning Performance
7.
對抗樣本(論文解讀八):Towards More Robust Adversarial Attack Against Real World Object Detectors
8.
論文:Speed/accuracy trade-offs for object detectors
9.
DSOD: Learning Deeply Supervised Object Detectors from Scratch 論文筆記
10.
對抗樣本(論文解讀一): DPATCH: An Adversarial Patch Attack on Object Detectors
更多相關文章...
•
C# 文本文件的讀寫
-
C#教程
•
*.hbm.xml映射文件詳解
-
Hibernate教程
•
JDK13 GA發佈:5大特性解讀
•
Scala 中文亂碼解決
相關標籤/搜索
論文解讀
excitation
technique
improve
assisted
detectors
learning
論文閱讀
object...object
object
MyBatis教程
Spring教程
Thymeleaf 教程
文件系統
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
1.2 Illustrator多文檔的幾種排列方式
2.
5.16--java數據類型轉換及雜記
3.
性能指標
4.
(1.2)工廠模式之工廠方法模式
5.
Java記錄 -42- Java Collection
6.
Java記錄 -42- Java Collection
7.
github使用
8.
Android學習筆記(五十):聲明、請求和檢查許可
9.
20180626
10.
服務擴容可能引入的負面問題及解決方法
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
Assisted Excitation of Activations: A Learning Technique to Improve Object Detect
2.
Incremental Learning of Object Detectors without Catastrophic Forgetting 論文閱讀
3.
Incremental Learning of Object Detectors without Catastrophic Forgetting詳解
4.
DSOD: Learning Deeply Supervised Object Detectors from Scratch 論文解讀
5.
論文閱讀:Learning to Segment Object Candidates(DeepMask)
6.
How To Improve Deep Learning Performance
7.
對抗樣本(論文解讀八):Towards More Robust Adversarial Attack Against Real World Object Detectors
8.
論文:Speed/accuracy trade-offs for object detectors
9.
DSOD: Learning Deeply Supervised Object Detectors from Scratch 論文筆記
10.
對抗樣本(論文解讀一): DPATCH: An Adversarial Patch Attack on Object Detectors
>>更多相關文章<<