【AtCoder】ARC063

ARC063

C - 一次元リバーシ / 1D Reversi

不一樣的顏色段數-1node

#include <bits/stdc++.h>
#define fi first
#define se second
#define pii pair<int,int>
#define mp make_pair
#define pb push_back
#define space putchar(' ')
#define enter putchar('\n')
#define eps 1e-10
#define MAXN 100005
//#define ivorysi
using namespace std;
typedef long long int64;
typedef unsigned int u32;
typedef double db;
template<class T>
void read(T &res) {
    res = 0;T f = 1;char c = getchar();
    while(c < '0' || c > '9') {
    if(c == '-') f = -1;
    c = getchar();
    }
    while(c >= '0' && c <= '9') {
    res = res * 10 +c - '0';
    c = getchar();
    }
    res *= f;
}
template<class T>
void out(T x) {
    if(x < 0) {x = -x;putchar('-');}
    if(x >= 10) {
    out(x / 10);
    }
    putchar('0' + x % 10);
}
int N;
char s[MAXN];
void Solve() {
    scanf("%s",s + 1);
    N = strlen(s + 1);
    int cnt = 0;
    for(int i = 2 ; i <= N ; ++i) {
    if(s[i] != s[i - 1]) ++cnt;
    }
    out(cnt);enter;
}

int main() {
#ifdef ivorysi
    freopen("f1.in","r",stdin);
#endif
    Solve();
    return 0;
}

D - 高橋君と見えざる手 / An Invisible Hand

利潤最大是從某個位置以後的最大值減去該位置的值,由於a兩兩不一樣,因此假如從位置x買入,從某個y所有賣出能夠獲得最大利潤,那麼y最多隻有一個c++

統計有幾個x會有這樣的y,而後這就是咱們須要至少下降一個的位置ui

#include <bits/stdc++.h>
#define fi first
#define se second
#define pii pair<int,int>
#define mp make_pair
#define pb push_back
#define space putchar(' ')
#define enter putchar('\n')
#define eps 1e-10
#define MAXN 100005
//#define ivorysi
using namespace std;
typedef long long int64;
typedef unsigned int u32;
typedef double db;
template<class T>
void read(T &res) {
    res = 0;T f = 1;char c = getchar();
    while(c < '0' || c > '9') {
    if(c == '-') f = -1;
    c = getchar();
    }
    while(c >= '0' && c <= '9') {
    res = res * 10 +c - '0';
    c = getchar();
    }
    res *= f;
}
template<class T>
void out(T x) {
    if(x < 0) {x = -x;putchar('-');}
    if(x >= 10) {
    out(x / 10);
    }
    putchar('0' + x % 10);
}
int N,T;
int a[MAXN];
set<int> S;
void Solve() {
    read(N);read(T);
    for(int i = 1 ; i <= N ; ++i) read(a[i]);
    int D = 0;
    for(int i = N ; i >= 1 ; --i) {
    if(S.size()) {
        auto t = *(--S.end());
        D = max(t - a[i],D);
    }
    S.insert(a[i]);
    }
    S.clear();
    int ans = 0;
    for(int i = N ; i >= 1 ; --i) {
    if(S.size()) {
        if(S.find(a[i] + D) != S.end()) ++ans;
    }
    S.insert(a[i]);
    }
    out(ans);enter;
}

int main() {
#ifdef ivorysi
    freopen("f1.in","r",stdin);
#endif
    Solve();
    return 0;
}

E - 木と整數 / Integers on a Tree

咱們把一個固定數值的點做爲根,而後默認每次走一條邊都+1spa

咱們遇到已經固定值的點,可能須要把一些邊從+1改爲-1,因此算出來的值必須和固定值得差值是偶數code

咱們算出每一個固定數值的點上面須要有多少改爲-1的邊,記錄一個子樹最大值排序

從新從根遍歷整棵樹,若是子樹中最大值仍然大於1,就把連向這個兒子的邊改成-1,遍歷到一個點時看看當前是否合法,不合法就是-1get

#include <bits/stdc++.h>
#define fi first
#define se second
#define pii pair<int,int>
#define mp make_pair
#define pb push_back
#define space putchar(' ')
#define enter putchar('\n')
#define eps 1e-10
#define MAXN 100005
//#define ivorysi
using namespace std;
typedef long long int64;
typedef unsigned int u32;
typedef double db;
template<class T>
void read(T &res) {
    res = 0;T f = 1;char c = getchar();
    while(c < '0' || c > '9') {
    if(c == '-') f = -1;
    c = getchar();
    }
    while(c >= '0' && c <= '9') {
    res = res * 10 +c - '0';
    c = getchar();
    }
    res *= f;
}
template<class T>
void out(T x) {
    if(x < 0) {x = -x;putchar('-');}
    if(x >= 10) {
    out(x / 10);
    }
    putchar('0' + x % 10);
}
struct node {
    int to,next;
}E[MAXN * 2];
int N,head[MAXN],sumE,K,val[MAXN],c[MAXN],dp[MAXN],mv[MAXN];
bool vis[MAXN];
bool flag = 0;
void add(int u,int v) {
    E[++sumE].to = v;
    E[sumE].next = head[u];
    head[u] = sumE;
}
void dfs(int u,int fa) {
    mv[u] = 1e9;
    if(vis[u]) {
    if(val[u] > c[u] || ((c[u] - val[u]) & 1)) {flag = 1;}
    else dp[u] = (c[u] - val[u]) / 2;
    mv[u] = dp[u];
    }
    
    for(int i = head[u] ; i ; i = E[i].next) {
    int v = E[i].to;
    if(v != fa) {
        c[v] = c[u] + 1;
        dfs(v,u);
        mv[u] = min(mv[u],mv[v]);
    }
    }
}
bool dfs2(int u,int fa,int d) {
    c[u] -= d * 2;
    if(vis[u] && c[u] != val[u]) return false;
    for(int i = head[u] ; i ; i = E[i].next) {
    int v = E[i].to;
    if(v != fa) {
        int t = d;
        if(mv[v] - d > 0) ++t;
        if(!dfs2(v,u,t)) return false;
    }
    }
    return true;
}

void Solve() {
    read(N);
    int a,b;
    for(int i = 1 ; i < N ; ++i) {
    read(a);read(b);
    add(a,b);add(b,a);
    }
    read(K);
    int v,p;
    for(int i = 1 ; i <= K ; ++i) {
    read(v);read(p);
    vis[v] = 1;val[v] = p;
    }
    int rt;
    for(int i = 1 ; i <= N ; ++i) {
    if(vis[i]) {rt = i;break;}
    }
    c[rt] = val[rt];
    dfs(rt,0);
    if(flag) {puts("No");return;}
    if(!dfs2(rt,0,0)) {puts("No");return;}
    puts("Yes");
    for(int i = 1 ; i <= N ; ++i) {out(c[i]);enter;}
}

int main() {
#ifdef ivorysi
    freopen("f1.in","r",stdin);
#endif
    Solve();
    return 0;
}

F - すぬけ君の塗り絵 2 / Snuke's Coloring 2

這個須要注意到一個性質,答案的下界是\(2max(H,W) + 1\)it

這告訴咱們什麼,這個空白矩形最優答案必定過\(y = H / 2\)\(x = W / 2\)class

咱們就能夠對x進行排序,從前日後遍歷,存兩個單調棧,一個棧底到棧頂遞增,y值都小於H/2,一個棧底到棧頂遞減,y值都大於H / 2date

對於一個i,咱們要存的是當前棧裏在i+1及之後最大的\(y_1\)小於H / 2,\(y_2\)大於H/2,存一個\(y_2 - y_1\)

咱們要找的就是\((y _2 - y_1) - x_{i}\)最大的那個i,而後加上當前遍歷到的\(x\),就是以x爲右邊界可能被計入答案的最大的矩形

#include <bits/stdc++.h>
#define fi first
#define se second
#define pii pair<int,int>
#define mp make_pair
#define pb push_back
#define space putchar(' ')
#define enter putchar('\n')
#define eps 1e-10
#define MAXN 300005
//#define ivorysi
using namespace std;
typedef long long int64;
typedef unsigned int u32;
typedef double db;
template<class T>
void read(T &res) {
    res = 0;T f = 1;char c = getchar();
    while(c < '0' || c > '9') {
    if(c == '-') f = -1;
    c = getchar();
    }
    while(c >= '0' && c <= '9') {
    res = res * 10 +c - '0';
    c = getchar();
    }
    res *= f;
}
template<class T>
void out(T x) {
    if(x < 0) {x = -x;putchar('-');}
    if(x >= 10) {
    out(x / 10);
    }
    putchar('0' + x % 10);
}
struct node {
    int l,r,ad,v;
}tr[MAXN * 4];
int W,H,N,ans;
pii p[MAXN];
int sta[2][MAXN],top[2];
void update(int u) {
    tr[u].v = max(tr[u << 1].v,tr[u << 1 | 1].v);
}
void addlz(int u,int v) {
    tr[u].ad += v;tr[u].v += v;
}
void pushdown(int u) {
    if(tr[u].ad) {
        addlz(u << 1,tr[u].ad);
        addlz(u << 1 | 1,tr[u].ad);
        tr[u].ad = 0;
    }
}
void build(int u,int l,int r) {
    tr[u].l = l;tr[u].r = r;tr[u].ad = 0;
    if(l == r) {
        tr[u].v =  H - p[l].fi;return;
    }
    int mid = (l + r) >> 1;
    build(u << 1,l,mid);
    build(u << 1 | 1,mid + 1,r);
    update(u);
}
void add(int u,int l,int r,int v) {
    if(l > r || !v) return;
    if(tr[u].l == l && tr[u].r == r) {
        addlz(u,v);return;
    }
    pushdown(u);
    int mid = (tr[u].l + tr[u].r) >> 1;
    if(r <= mid) add(u << 1,l,r,v);
    else if(l > mid) add(u << 1 | 1,l,r,v);
    else {add(u << 1,l,mid,v);add(u << 1 | 1,mid + 1,r,v);}
    update(u);
}
int query(int u,int l,int r) {
    if(l > r) return 0;
    if(tr[u].l == l && tr[u].r == r) return tr[u].v;
    pushdown(u);
    int mid = (tr[u].l + tr[u].r) >> 1;
    if(r <= mid) return query(u << 1,l,r);
    else if(l > mid) return query(u << 1 | 1,l,r);
    else return max(query(u << 1,l,mid),query(u << 1 | 1,mid + 1,r));
}
int Calc() {
    sort(p + 1,p + N + 1);
    build(1,0,N);
    top[0] = top[1] = 0;
    memset(sta,0,sizeof(sta));
    int res = 0;
    for(int i = 1 ; i <= N ; ++i) {
        res = max(res,query(1,0,i - 1) + p[i].fi);
        if(p[i].se > H / 2) {
            int pre = H,pos = i;
            while(top[1] && p[sta[1][top[1]]].se > p[i].se) {
                add(1,sta[1][top[1]],pos - 1,-pre);
                pre = p[sta[1][top[1]]].se;
                pos = sta[1][top[1]];
                --top[1];
            }
            add(1,sta[1][top[1]],pos - 1,-pre);
            add(1,sta[1][top[1]],i - 1,p[i].se);
            sta[1][++top[1]] = i;
        }
        else {
            int pre = 0,pos = i;
            while(top[0] && p[sta[0][top[0]]].se < p[i].se) {
                add(1,sta[0][top[0]],pos - 1,pre);
                pre = p[sta[0][top[0]]].se;
                pos = sta[0][top[0]];
                --top[0];
            }
            add(1,sta[0][top[0]],pos - 1,pre);
            add(1,sta[0][top[0]],i - 1,-p[i].se);
            sta[0][++top[0]] = i;
        }

    }
    res = max(res,query(1,0,N) + W);
    return 2 * res;
}
void Solve() {
    read(W);read(H);read(N);
    for(int i = 1 ; i <= N ; ++i) {
        read(p[i].fi);read(p[i].se);
    }
    ans = 2 * max(H,W) + 1;
    ans = max(ans,Calc());
    for(int i = 1 ; i <= N ; ++i) swap(p[i].fi,p[i].se);
    swap(W,H);
    ans = max(ans,Calc());
    out(ans);enter;
}
int main() {
#ifdef ivorysi
    freopen("f1.in","r",stdin);
#endif
    Solve();
    return 0;
}
相關文章
相關標籤/搜索