Spring 集成Kafka(完整版)

前面的文章咱們已經完成了Kafka基於Zookeeper的集羣的搭建了。Kafka集羣搭建請點我。記過幾天的研究已經實現Spring的集成了。本文重點java

jar包準備

  • 集成是基於spring-integration-kafka完成的。我這裏用的項目是maven。該jar包在maven的位置
<dependency>    
    <groupId>org.springframework.integration</groupId>
    <artifactId>spring-integration-kafka</artifactId>
    <version>1.3.0.RELEASE</version>
</dependency>

友情提醒:本身在網上看的教程多引入了kafka_2.10jar包。個人項目報錯。建議搭建指引入和kafka相關的上面那個jar包web

配置生產者(spring-kafka-producer.xml)

  • 有了jar包咱們只須要在spring的配置文件中配置就好了。這裏我單獨將生產者和消費者進行抽離配置spring

  • 首先咱們配置生產消息的頻道(工具類),這個頻道基於queue。最後咱們在消息發送也是經過該類實現發送消息的apache

<int:channel id="kafkaProducerChannel">
    <int:queue />
</int:channel>
  • 有了頻道咱們須要將頻道和消息分類結合起來 , outbound-channel-adapter 。顧名思義發送+頻道+分類。該類就是設置這三個的聯繫的。這裏咱們主要看的是kafka-producer-context-ref。他是生產者消息的來源地
<int-kafka:outbound-channel-adapter
        id="kafkaOutboundChannelAdapterTopic" kafka-producer-context-ref="producerContextTopic"
        auto-startup="true" channel="kafkaProducerChannel" order="3">
        <int:poller fixed-delay="1000" time-unit="MILLISECONDS"
            receive-timeout="1" task-executor="taskExecutor" />
    </int-kafka:outbound-channel-adapter>
  • 生產者的類別設置。及消息的編碼序列化等操做都是該類設置的
    首先就是這裏的topic。每一個topic對應一個類。topic中的broker-list是kafka服務(集羣)。key-serializer和key-encoder分別設置序列化和編碼。二者只須要設置一個就行。value-class-type是消息的類型。value-serializer和value-encoder和key是同樣的解釋
<int-kafka:producer-context id="producerContextTopic"
        producer-properties="producerProperties">
        <int-kafka:producer-configurations>
            <!-- 多個topic配置  broker-list kafaka服務
            key_serializer  value-serializer 就是用了本身的編碼格式
            value-class-type 指定發送消息的類型-->
            <int-kafka:producer-configuration
                broker-list="192.168.1.130:9091" key-serializer="stringSerializer"
                value-class-type="java.lang.Object" value-serializer="stringSerializer"
                topic="testTopic" />
            <int-kafka:producer-configuration
                broker-list="192.168.1.130:9091" key-serializer="stringSerializer"
                value-class-type="java.lang.Object" value-serializer="stringSerializer"
                topic="myTopic" />
        </int-kafka:producer-configurations>
    </int-kafka:producer-context>
  • 上面消費者設置的序列化咱們須要單獨設置一下。咱們能夠採用spring-integration-kafka提供的序列化類。可是用了那個序列只能傳遞字符串。咱們能夠從定義該類實現傳遞對象(包括字符串)
    這裏寫圖片描述
<bean id="stringSerializer" class="com.bshinfo.web.base.kafka.producer.MySerializer" />
  • 完整配置
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:int="http://www.springframework.org/schema/integration" xmlns:int-kafka="http://www.springframework.org/schema/integration/kafka" xmlns:task="http://www.springframework.org/schema/task" xsi:schemaLocation="http://www.springframework.org/schema/integration/kafka http://www.springframework.org/schema/integration/kafka/spring-integration-kafka.xsd http://www.springframework.org/schema/integration http://www.springframework.org/schema/integration/spring-integration.xsd http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd http://www.springframework.org/schema/task http://www.springframework.org/schema/task/spring-task.xsd">

    <!-- 生產者生產信息是鍵值對內容的格式。默認是 org.apache.kafka.common.serialization.StringSerializer 這裏咱們重寫方法。便於方法傳遞對象 具體看MySerializer-->
    <bean id="stringSerializer" class="com.bshinfo.web.base.kafka.producer.MySerializer" />
    <!-- 這裏的Encoder在下面沒有用到 刪掉也能夠 Encoder和Serializer只用設置一個就好了。 consumer.xml中的配置也是同樣 -->
    <!-- <bean id="kafkaEncoder" class="org.springframework.integration.kafka.serializer.avro.AvroReflectDatumBackedKafkaEncoder"> <constructor-arg value="com.kafka.demo.util.ObjectEncoder" /> </bean> -->
    <!-- 生產者一些配置屬性。不配置按默認執行 -->
    <bean id="producerProperties" class="org.springframework.beans.factory.config.PropertiesFactoryBean">
        <property name="properties">
            <props>
                <prop key="topic.metadata.refresh.interval.ms">3600000</prop>
                <prop key="message.send.max.retries">5</prop>
                <!-- <prop key="serializer.class">com.kafka.demo.util.ObjectEncoder</prop> -->
                <prop key="request.required.acks">1</prop>
            </props>
        </property>
    </bean>

    <!-- 生產者經過這個頻道傳送消息 基於queue-->
    <int:channel id="kafkaProducerChannel">
        <int:queue />
    </int:channel>

    <!-- 生產者發送消息設置 頻道+方法配置 -->
    <int-kafka:outbound-channel-adapter  id="kafkaOutboundChannelAdapterTopic" kafka-producer-context-ref="producerContextTopic" auto-startup="true" channel="kafkaProducerChannel" order="3">
        <int:poller fixed-delay="1000" time-unit="MILLISECONDS" receive-timeout="1" task-executor="taskExecutor" />
    </int-kafka:outbound-channel-adapter>
    <task:executor id="taskExecutor" pool-size="5" keep-alive="120" queue-capacity="500" />

    <!-- 消息發送的主題設置。必須設置了主題才能發送相應主題消息 -->
    <int-kafka:producer-context id="producerContextTopic" producer-properties="producerProperties">
        <int-kafka:producer-configurations>
            <!-- 多個topic配置 broker-list kafaka服務 key_serializer value-serializer 就是用了本身的編碼格式 value-class-type 指定發送消息的類型-->
            <int-kafka:producer-configuration  broker-list="192.168.1.130:9091" key-serializer="stringSerializer" value-class-type="java.lang.Object" value-serializer="stringSerializer" topic="testTopic" />
            <int-kafka:producer-configuration  broker-list="192.168.1.130:9091" key-serializer="stringSerializer" value-class-type="java.lang.Object" value-serializer="stringSerializer" topic="myTopic" />
        </int-kafka:producer-configurations>
    </int-kafka:producer-context>
</beans>
  • 最後咱們在生產消息的地方注入咱們配置文件中的頻道就能夠發送消息了
    這裏寫圖片描述
    這裏寫圖片描述

消費者配置(spring-kafka-consumer.xml)

  • 上面的配置就能夠實現消息的發送了。咱們項目中會繼續配置接收消息(消費者)。配置和生產者的配置同樣。這裏就不詳細的解釋了。代碼裏解釋的很詳細了。只不過裏面多了配置Zookeeper的集羣信息。還有一點由於在生產者我配置的序列化。因此這裏爲了配置全面這裏採用配置的編碼了 json

    • 完整配置
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:int="http://www.springframework.org/schema/integration" xmlns:int-kafka="http://www.springframework.org/schema/integration/kafka" xmlns:task="http://www.springframework.org/schema/task" xsi:schemaLocation="http://www.springframework.org/schema/integration/kafka http://www.springframework.org/schema/integration/kafka/spring-integration-kafka.xsd http://www.springframework.org/schema/integration http://www.springframework.org/schema/integration/spring-integration.xsd http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd http://www.springframework.org/schema/task http://www.springframework.org/schema/task/spring-task.xsd">

    <!-- 接收的頻道 也能夠理解爲接收的工具類 -->
    <int:channel id="inputFromKafka">
        <int:dispatcher task-executor="kafkaMessageExecutor" />
    </int:channel>
    <!-- zookeeper配置 能夠配置多個 -->
    <int-kafka:zookeeper-connect id="zookeeperConnect" zk-connect="192.168.1.130:2181,192.168.1.130:2182,192.168.1.130:2183" zk-connection-timeout="6000" zk-session-timeout="6000" zk-sync-time="2000" />
    <!-- channel配置 auto-startup="true" 不然接收不發數據 -->
    <int-kafka:inbound-channel-adapter  id="kafkaInboundChannelAdapter" kafka-consumer-context-ref="consumerContext" auto-startup="true" channel="inputFromKafka">
        <int:poller fixed-delay="1" time-unit="MILLISECONDS" />
    </int-kafka:inbound-channel-adapter>
    <task:executor id="kafkaMessageExecutor" pool-size="8" keep-alive="120" queue-capacity="500" />
    <!-- <bean id="kafkaDecoder" class="org.springframework.integration.kafka.serializer.common.StringDecoder" /> -->

    <bean id="kafkaDecoder" class="com.bshinfo.web.base.kafka.consumer.MyDecoder" />
    <bean id="consumerProperties" class="org.springframework.beans.factory.config.PropertiesFactoryBean">
        <property name="properties">
            <props>
                <prop key="auto.offset.reset">smallest</prop>
                <prop key="socket.receive.buffer.bytes">10485760</prop> <!-- 10M -->
                <prop key="fetch.message.max.bytes">5242880</prop>
                <prop key="auto.commit.interval.ms">1000</prop>
            </props>
        </property>
    </bean>
    <!-- 消息接收的BEEN -->
    <bean id="kafkaConsumerService" class="com.bshinfo.web.base.kafka.consumer.ConsumerMessages" />
    <!-- 指定接收的方法 -->
    <int:outbound-channel-adapter channel="inputFromKafka" ref="kafkaConsumerService" method="processMessage" />

    <int-kafka:consumer-context id="consumerContext" consumer-timeout="1000" zookeeper-connect="zookeeperConnect" consumer-properties="consumerProperties">
        <int-kafka:consumer-configurations>
            <int-kafka:consumer-configuration  group-id="default1" value-decoder="kafkaDecoder" key-decoder="kafkaDecoder" max-messages="5000">
                <!-- 兩個TOPIC配置 -->
                <int-kafka:topic id="myTopic" streams="4" />
                <int-kafka:topic id="testTopic" streams="4" />
            </int-kafka:consumer-configuration>
        </int-kafka:consumer-configurations>
    </int-kafka:consumer-context>
</beans>
  • 配置中消費者實現類
package com.bshinfo.web.base.kafka.consumer;

import java.util.Collection;
import java.util.Iterator;
import java.util.Map;
import java.util.Set;

import net.sf.json.JSONArray;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;


public class ConsumerMessages
{

    private static final Logger logger = LoggerFactory.getLogger(ConsumerMessages.class);

    public void processMessage(Map<String, Map<Integer, Object>> msgs) 
    {
        logger.info("================================processMessage===============");
        for (Map.Entry<String, Map<Integer, Object>> entry : msgs.entrySet()) 
        {
            logger.info("============Topic:" + entry.getKey());
            System.err.println("============Topic:" + entry.getKey());
            Map<Integer, Object> messages = entry.getValue();
            Set<Integer> keys = messages.keySet();
            for (Integer i : keys)
            {
                 logger.info("======Partition:" + i);
                 System.err.println("======Partition:" + i);
            }
            Collection<Object> values = messages.values();
            for (Iterator<Object> iterator = values.iterator(); iterator.hasNext();) 
            {
                Object object = iterator.next();
                String message = "["+object.toString()+"]";
                logger.info("=====message:" + message);
                System.err.println("=====message:" + message);
                JSONArray jsonArray = JSONArray.fromObject(object);
                for (int i=0;i<jsonArray.size();i++)
                {
                    Object object2 = jsonArray.get(i);
                    System.out.println(object2.toString());
                    /*JSONObject object2 = (JSONObject) jsonArray.get(i); UserInfo userInfo = (UserInfo) JSONObject.toBean(object2,UserInfo.class); System.out.println(userInfo.getRealName()+"@@@"+userInfo.getUserSex());*/
                }

            }
        }
    }
}
  • 消費者中轉碼的工具類

這裏寫圖片描述

源碼下載markdown

相關文章
相關標籤/搜索