開發者說 | 雲+AI賦能心電醫療領域的應用

以「醫工匯聚 智競心電」爲主題的首屆中國心電智能大賽自2019年1月1日啓動全球招募起,共吸引總計545支來自世界各地的醫工結合團隊,308支團隊近780名選手經過初賽資格審查,通過初賽、複賽、決賽近8個月的激烈角逐,越光醫療經過其算法成績及答辯結果斬獲大賽總決賽一等獎,同時開啓了企業自身從傳統心電分析算法到人工智能和機器學習新一代算法的戰略轉型。
此文應首屆「中國心電智能大師賽」舉辦方京東雲與AI和清華數據院的邀請,做爲大賽的獲獎單位表明,以及越光醫療CTO,分享和探討越光醫療在心電智能診斷領域的理解,應用與實踐成果。

1、行業背景

自從Holter(24小時連續動態心電記錄)發明以來半個多世紀,隨着半導體技術的不斷髮展,心電記錄存儲時長已從最初24小時作到14天,設備也從收音機體積降到貼附可穿戴式。大量心電數據的便宜獲取使得心電自動分析算法逐漸成爲Ambulatory ECG的核心技術門檻。自上世紀80年代開始,美國麻省理工學院和哈佛醫學院,政府機構及多家心電企業專家們探索動態心電診斷算法行業標準,直到90年代末造成AAMI 標準被美國FDA和CE採納爲動態心電產品認證要求,極大推進了以歐美爲主導的Holter標準化和市場化。算法

長期以來,我國Holter以進口Holter產品和技術爲主,直到2014年10月國家藥監局正式頒佈了與全球統一的行業YY標準,提供了國產產品與進口產品一致性評價的客觀路徑,將對國產心電診斷技術產品的創新和發展產生深遠影響。docker

越光醫療自2016年得到新標準下藥監局批准的長時程可穿戴式動態心電記錄儀,陸續推出了我的心律監測和社區心律患教機等專利創新產品。利用醫療心電傳感技術和獨有超低功耗技術實現了無需充電的接二連三(最長30天)或高頻次(2萬次)心電採集,性能和功能達到或超越美國行業同類產品。極大下降醫生操做門檻,提高患者依從性,而且在全國範圍內200多家醫療機構獲得普遍和穩定的臨牀使用。但與此同時,也帶來海量心電原始數據,醫療機構對心電智能處理的時效性和準確性的要求與日俱增。數據庫

2、挑戰與機遇並存

雖然傳統心電圖機發明已超過100年曆史,但臨牀心律失常的診斷仍依賴動態心電或Holter。中國有近3億心血管疾病人羣。60歲以上超過2億。常見心律失常如房顫帶來5倍以上腦卒中風險,也是形成20%以上腦梗的主要緣由。除腦梗猝死等風險,心律失常也將嚴重下降患者生活質量,治療或長期管理不善甚至致使結構型心臟病心衰等不可逆慢病。安全

據統計,我國每一年進行2.5億次10秒常規心電圖和3500萬份動態心電圖檢查,而心電圖醫師約有3萬名。臨牀出具1份動態心電報告須要基於15-30分鐘的數據清理。若是每位醫生每日處理超過10份動態心電報告和100份常規心電圖則會帶來巨大工做負擔。所以不管臨牀診斷,或健康預防,心電檢查服務都須要供給側改變,這正是咱們對人工智能的應用指望之一。服務器

美國過去10年間,因爲其醫療保險特有制度,造成了第三方獨立診斷服務中心,爲全國範圍內臨牀醫生提供心電處理服務。也由此成就了很多成功企業,例如iRhythm和CardioNet,日均服務上萬人次,市值共計40億美圓(約人民幣280億)。網絡

所以,對於如中國、印度等人口衆多,醫療資源地域差別大、相對缺少的國家或地區來講,需求大,挑戰大,但創新和市場的想象空間更大。app

3、AI在心電診斷中的應用

吳恩達領導的斯坦福大學團隊在今年的Nature Medicine發表了深度神經網絡學習(DNN算法)在心律失常自動診斷的應用結果:經過91232份單導聯心電記錄(平均10.6天)對比算法和普通醫生,發現前者(ROC達0.97)的平均陽性預測率和平均敏感度均超事後者機器學習

越光認爲AI在醫療領域的應用有三種方向:函數

(1)比醫生作得更好的AI,由於醫生肉眼有限;性能

(2)比醫生作得更快、能夠輔助醫生提升工做效率的AI;

(3)能夠經過大量學習資深醫生或專家經驗,幫助普通醫生或基層醫生達到工做要求的AI

吳恩達團隊該項研究也驗證了AI在(2)和(3)方面的可行性和共性,即監督化學習和海量臨牀數據。

4、越光醫療在心電智能大賽中的突破

京東雲與AI和清華數據院提供了本次大賽計算基礎設施和計算能力,清華大學醫學院和清華長庚醫院等組織設計了比賽所用常規心電圖數據庫,共計20000多條,包括正常心電圖,八種異常心電圖(心房顫動、一度房室傳導阻滯、右束支阻滯、左前分支阻滯、室性早搏、房性早搏、早復極圖形改變和T波改變),以及「其餘心電圖」。「其餘心電圖」較普遍地覆蓋了以上9類沒法準確描述的心電圖數據。

越光醫療參賽算法基於ResNet並進行了以下創新:

(1)結合深度學習與傳統心電處理及特徵工程的特色實現有效平衡,好比經過希爾伯特變換增長心電信息,對信號降採樣以提升效率並避免過擬合,提取QRS位置,RR,RR變化率,QRS寬度,ST段高度,電軸方向等諸多傳統特徵,對傳統特徵進行直方圖,求最高、最低、平均、方差等方式進行變換,並進行Z Normalization(歸一化),對於頻繁出現的異常採用Global Pooling,對於偶然出現的異常採用Max Pooling。

(2)使用單一模型預測互斥與共存進行分類

定義損失函數的兩部分及其主要任務,並根據訓練集數據標籤進行頻率加權:

  1. Multi-class softmax cross entropy 區分:正常,待確認異常,和未知異常
  2. Multi-label binary cross entropy 識別:8種待確認異常

(3)根據心電數據特色進行預處理和擴張

在每一個Batch中,經過數據隨機截取至最短長度做爲一種數據平移的數據加強,並根據預處理結果保留有效信息的片斷。

(4)實現更強的可解釋性

考慮到實際臨牀工做中醫生可能對「黑箱」式診斷算法存在顧慮,越光醫療引入Class Activation Mapping技術可視化神經網絡學習的關鍵過程,作到既能打破「黑箱」又能獲取醫生反饋從而進一步學習,該策略得到總決賽評委的一致承認和好評。

(5)結合多種防止過擬合的方法避免過分擬合

經過多任務學習共享權重,如各種異常共享ResNet提取的特徵,Global Pooling,對模型採用L2正規化項,提早終止,使用濾波下降噪音,不影響診斷的前提下,下降採樣率,及Bagging等技術。

(6)保證算法的可拓展性

實現經過對單一模型的簡單修改便可完成對更多互斥或共存的異常分類。

越光參賽算法一路過關斬將,獲得了F1=0.879的總決賽高分以及最高答辯評分,得到本次大賽的一等獎的同時,也被2019年國際醫學圖像計算和計算機輔助領域的頂級綜合性學術會議(MICCAI)論文收錄。越光經過實踐驗證了以上創新點的正確性。

儘管如此,大賽與越光實際臨牀業務還存在很多方面的差別。好比:

(1)心電數據類型與採集時間。大賽提供數據爲10秒的12導聯心電圖片斷。越光業務數據爲連續動態心電圖(最長30天)的單導聯心電圖,或30秒的單導聯心電圖片斷。雖然10秒12導聯常規心電圖機在臨牀和體檢已普遍應用,但對心律失常的診斷還是以最少24小時的動態心電爲主,並且記錄時間越長、患者佩戴依從性越好,捕捉心律失常的能力就越高,已經造成全球臨牀專家共識和指南。

(2)數據規模。大賽共20000多條數據,每條數據幾百KB量級,總量幾百M。而越光業務數據每條數倍於常規心電圖,多數單條數據超過100M,數據總量達TB級別,累計幾十萬人次且保持每個月不斷持續高速增加。

(3)比賽與臨牀診斷要求。大賽僅要求結論性判斷,使用的F1評分兼顧準確性和敏感度的平衡。而實際臨牀診斷不只要求敏感度和準確度高,對於假陽性或假陰性的容忍度也較低。除告終論性判斷,更要求對於心拍檢出和心率檢出,甚至各種心律失常事件負荷度的統計,才能支持臨牀診斷服務的要求。

(4)響應時效要求。大賽是針對離線數據進行調優,而實際臨牀診斷須要實時或較短(24小時內)的準確結果才能保證患者就診流暢。

5、越光醫療在現有產品中的應用實施案例

國外臨牀文獻早在2009年就進行過大規模和多中心的單導聯與12導聯的單盲診斷對比,發現針對房顫和正常心律檢測的準確性能夠高達96%-99%以上。

越光現有產品經過傳統心電分析和心律失常診斷算法,雖然在國家藥監局和FDA及CE行業標準要求的數據庫(MIT、AHA等DB)評測達到30秒及以上房顫檢出率100%,但在真實臨牀使用中,仍存在須要臨牀醫生審覈干預去除假陽性檢查的工做環節。所以不斷提高算法,下降真實世界的假陽性檢出率來不斷減小一線醫生工做是AI在心電醫療應用的真實需求之一。

爲此,越光將這次大賽算法應用到經過越光產品產生的46萬人次30秒單導聯心電數據庫中,與心電醫師確認結果進行單盲比對,發現4.5%的噪聲或僞差以外,房顫檢查的準確性能夠達到94.7%。越光與中國和美國心律臨牀專家一道將研究結果提交2020年度的國際心律學會(Heart Rhythm)會議論文。

6、可持續性創新合做

本次大賽給予了像越光醫療這樣的醫療器械企業與京東雲與AI和清華數據院的可持續性創新合做機會。除了與臨牀機構或客戶端的落地應用,越光認爲企業能夠在如下方面借力IT基礎設施提供方(如京東雲與AI):

(1)提供流暢和安全的數據服務:中國有3萬家醫療機構和90多萬家基層衛生服務中心,遍及全國各地。網絡條件地區性差別與海量數據上行下傳將是首要須要解決的問題,須要儘量靠近用戶而且覆蓋多運營商的節點提供數據接收服務。此外,數據安全性要求和級別也將隨着規模的迅速擴大而提上日程。好比,能夠選擇京東雲與AI OSS用戶所在地域節點實現接收並存儲數據,以達到需求。

(2)提供高速經濟的規模化模型訓練:實際臨牀數據總量量級,若是在自有服務器訓練須要經由京東雲與AI OSS相關數據服務,有耗時長且自有服務器能力不足等缺陷。好比,可直接在京東雲上使用GPU雲主機進行數據訓練,並經過內網快速拉取OSS數據供單機使用的測量,以達到需求。

(3)模型部署與彈性伸縮:臨牀實際使用中,算法只需對每條數據一次性處理,而且每日使用頻次波峯波谷將明顯突出,與實驗或回測工做造成鮮明不一樣。所以,可採起直接使用CPU進行處理,並封裝至docker鏡像內的策略。並經過京東kubernetes集羣配合彈性伸縮對用戶數據完成及時相應,以達到需求。

在解決了以上問題的基礎上,能夠和有心律失常社區化管理需求的地區性中心醫院創建心律失常分級診療醫聯體模式的多方運營合做,造成樣版工程。

7、結束語

首屆「中國心電智能大賽」雖然順利落下帷幕,但大賽在推進中國心電人工智能在臨牀實踐方面提供了可借鑑、能實踐的案例,屬於推進健康醫療和大數據發展的一次里程碑。

在創建不斷壯大的臨牀數據庫持續推進臨牀和科研創新的過程當中,完善可複製性產品和服務方案,既知足醫院和患者的實際需求,又實現國家對健康中國的戰略性要求。

再次感謝本次大賽的舉辦單位,清華大學臨牀醫學院、數據科學研究院,北京清華長庚醫院,青島大學附屬醫院,天津市武清區人民醫院,中關村醫院,福建省立醫院,京津高村科技創新園,京津高村科技創新園,京東雲與AI雲桌面雲平臺技術支持。

這是筆者第一次參加基於深度學習應用開發的比賽,爲了讓更多像筆者同樣才入門的朋友能儘快上手,因此記錄下來了筆者整個初賽解題思路與實踐過程。最後很感謝舉辦方組織的這個比賽,讓參賽選手收穫不少實戰經驗與應用技巧。

越光醫療團隊簡介
邢文輝
越光醫療聯合創始人兼CTO(2014年至今),負責越光動態心電診斷系統研發,組織越光中美心臟專家和技術團隊,越光系統在全國和印度範圍100+家醫院的臨牀運營使用。復旦大學計算機與信息技術系(2006),NOI全國信息學競賽銅牌(43名),ACM/ICPC 2006 亞洲分賽區冠軍,世界總決賽第26名。過往工做經歷:Google、Topcoder
袁彬航
Rice University PhD(2019 expected),第17屆生物學競賽全國銀牌(31名),復旦大學計算機與信息技術系(2009),VLDB 2019 Honourable Mention Award。
過往工做經歷:MSRA、TABLEAU
公司簡介
上海越光成立於2014年9月。做爲國產企業,致力於自主研發生產達到和超過國際水平的新型心電診斷和數據管理技術和產品,爲心血管醫生提供更經濟高效的心律失常診斷管理手段,經過技術創新、產品創新和服務創新,實現目標客戶臨牀和科研訴求。「欲善其事,先利其器」,越光將結合智能化處理的優點,在保證醫療精準質量的前提下,下降一線醫療人員和基層醫療機構的資源負擔。同時將互聯網、物聯網和雲計算等通用技術應用到房顫及心律失常診斷管理中,借鑑醫聯體模式來減小甚至消除地域帶來就診「不平等」或「看病難」等問題。
公司官網: http://www.prudencemed.com/

點擊【閱讀】可查看更多大賽賽程及成果

相關文章
相關標籤/搜索