JavaShuo
欄目
標籤
Structural Image Classification with Graph Neural Networks
時間 2020-12-24
原文
原文鏈接
1. Project Aims 通過將圖像表示爲無向圖來利用區域之間的模式和關係。 使用最近提出的Graph Neural Networks [1]模型來處理結構化數據的分類: 2. Image Structure as Graphs 圖像的結構上下文可以表示爲圖G = {N,E},其中N(節點)對應於感興趣區域,E(邊緣)對應於兩個不同區域之間的連接。圖1說明了所考慮的結構表示。 Region
>>阅读原文<<
相關文章
1.
IMAGE DENOISING WITH GRAPH-CONVOLUTIONAL NEURAL NETWORKS
2.
Bag of Tricks for Image Classification with Convolutional Neural Networks
3.
Applications of Graph Neural Networks
4.
Pre-Training Graph Neural Networks for Generic Structural Feature Extraction
5.
Overlapping Community Detection with Graph Neural Networks
6.
Few-Shot Learning with Graph Neural Networks
7.
Semi-Supervised Classification With Graph Convolutional Networks
8.
SEMI-SUPERVISED CLASSIFICATION WITH GRAPH CONVOLUTIONAL NETWORKS
9.
Semi-Supervised Classification with Graph Convolutional Networks
10.
ImageNet Classification with Deep Convolutional Neural Networks
更多相關文章...
•
RSS
元素
-
RSS 教程
•
ASP.NET Image 控件
-
ASP.NET 教程
•
Docker 清理命令
•
爲了進字節跳動,我精選了29道Java經典算法題,帶詳細講解
相關標籤/搜索
networks
graph
structural
classification
neural
image
c#image
with+this
with...connect
with...as
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
升級Gradle後報錯Gradle‘s dependency cache may be corrupt (this sometimes occurs
2.
Smarter, Not Harder
3.
mac-2019-react-native 本地環境搭建(xcode-11.1和android studio3.5.2中Genymotion2.12.1 和VirtualBox-5.2.34 )
4.
查看文件中關鍵字前後幾行的內容
5.
XXE萌新進階全攻略
6.
Installation failed due to: ‘Connection refused: connect‘安卓studio端口占用
7.
zabbix5.0通過agent監控winserve12
8.
IT行業UI前景、潛力如何?
9.
Mac Swig 3.0.12 安裝
10.
Windows上FreeRDP-WebConnect是一個開源HTML5代理,它提供對使用RDP的任何Windows服務器和工作站的Web訪問
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
IMAGE DENOISING WITH GRAPH-CONVOLUTIONAL NEURAL NETWORKS
2.
Bag of Tricks for Image Classification with Convolutional Neural Networks
3.
Applications of Graph Neural Networks
4.
Pre-Training Graph Neural Networks for Generic Structural Feature Extraction
5.
Overlapping Community Detection with Graph Neural Networks
6.
Few-Shot Learning with Graph Neural Networks
7.
Semi-Supervised Classification With Graph Convolutional Networks
8.
SEMI-SUPERVISED CLASSIFICATION WITH GRAPH CONVOLUTIONAL NETWORKS
9.
Semi-Supervised Classification with Graph Convolutional Networks
10.
ImageNet Classification with Deep Convolutional Neural Networks
>>更多相關文章<<