Hadoop概念學習系列之Java調用Shell命令和腳本,致力於hadoop/spark集羣(三十六)

前言html

  說明的是,本博文,是在如下的博文基礎上,立足於它們,致力於個人大數據領域!java

http://kongcodecenter.iteye.com/blog/1231177 linux

http://blog.csdn.net/u010376788/article/details/51337312 shell

http://blog.csdn.net/arkblue/article/details/7897396 apache

 

 

第一種:普通作法windows

   首先,編號寫WordCount.scala程序。分佈式

   而後,打成jar包,命名爲WC.jar。好比,我這裏,是導出到windows桌面。ide

   其次,上傳到linux的桌面,再移動到hdfs的/目錄。oop

   最後,在spark安裝目錄的bin下,執行大數據

spark-submit \
> --class cn.spark.study.core.WordCount \
> --master local[1] \
> /home/spark/Desktop/WC.jar \
> hdfs://SparkSingleNode:9000/spark.txt \
> hdfs://SparkSingleNode:9000/WCout

 

 

 

 第二種:高級作法

  有時候咱們在Linux中運行Java程序時,須要調用一些Shell命令和腳本。而Runtime.getRuntime().exec()方法給咱們提供了這個功能,並且Runtime.getRuntime()給咱們提供瞭如下幾種exec()方法:

  很少說,直接進入。

  步驟一: 爲了規範起見,命名爲JavaShellUtil.java。在本地裏寫好

 

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.util.List;


public class JavaShellUtil {
public static void main(String[] args) throws Exception {

String cmd="hdfs://SparkSingleNode:9000/spark.txt";
InputStream in = null;

try {
Process pro =Runtime.getRuntime().exec("sh /home/spark/test.sh "+cmd);
pro.waitFor();
in = pro.getInputStream();
BufferedReader read = new BufferedReader(new InputStreamReader(in));
String result = read.readLine();
System.out.println("INFO:"+result);
} catch (Exception e) {
e.printStackTrace();
}
}
}

 

 

package cn.spark.study.core
import org.apache.spark.SparkConf
import org.apache.spark.SparkContext

/**
* @author Administrator
*/
object WordCount {

def main(args: Array[String]) {
if(args.length < 2){
println("argument must at least 2")
System.exit(1)
}
val conf = new SparkConf()
.setAppName("WordCount")
// .setMaster("local");//local就是 不是分佈式的文件,即windows下和linux下
val sc = new SparkContext(conf)

val inputPath=args(0)
val outputPath=args(1)

val lines = sc.textFile(inputPath, 1)
val words = lines.flatMap { line => line.split(" ") }
val pairs = words.map { word => (word, 1) }
val wordCounts = pairs.reduceByKey { _ + _ }
wordCounts.collect().foreach(println)
wordCounts.repartition(1).saveAsTextFile(outputPath)
}
}

 

 

 

 

 

 

   步驟二:編寫好test.sh腳本

spark@SparkSingleNode:~$ cat test.sh
#!/bin/sh
/usr/local/spark/spark-1.5.2-bin-hadoop2.6/bin/spark-submit \
--class cn.spark.study.core.WordCount \
--master local[1] \
/home/spark/Desktop/WC.jar \
$1 hdfs://SparkSingleNode:9000/WCout

 

 

 

  步驟三:上傳JavaShellUtil.java,和打包好的WC.jar

spark@SparkSingleNode:~$ pwd
/home/spark
spark@SparkSingleNode:~$ ls
Desktop Downloads Pictures Templates Videos
Documents Music Public test.sh
spark@SparkSingleNode:~$ cd Desktop/
spark@SparkSingleNode:~/Desktop$ ls
JavaShellUtil.java WC.jar
spark@SparkSingleNode:~/Desktop$ javac JavaShellUtil.java
spark@SparkSingleNode:~/Desktop$ java JavaShellUtil
INFO:(hadoop,1)
spark@SparkSingleNode:~/Desktop$ cd /usr/local/hadoop/hadoop-2.6.0/

 

 

 

  步驟四:查看輸出結果

 

spark@SparkSingleNode:/usr/local/hadoop/hadoop-2.6.0$ bin/hadoop fs -cat /WCout/par*
(hadoop,1)
(hello,5)
(storm,1)
(spark,1)
(hive,1)
(hbase,1)
spark@SparkSingleNode:/usr/local/hadoop/hadoop-2.6.0$

  成功!

 

 關於

Shell 傳遞參數 

http://www.runoob.com/linux/linux-shell-passing-arguments.html  

 

 

  最後說的是,不侷限於此,能夠穿插在之後咱們生產業務裏的。做爲調用它便可,很是實用!

相關文章
相關標籤/搜索