java實現spark經常使用算子之Repartitions

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.api.java.function.VoidFunction;

import java.util.ArrayList;
import java.util.Arrays;
import java.util.Iterator;
import java.util.List;

/**
* repartitions 算子:
* 增長分區,使用shuffle操做
*/
public class RepartitionsOperator {

public static void main(String[] args){
SparkConf conf = new SparkConf().setMaster("local").setAppName("repartitions");
JavaSparkContext sc = new JavaSparkContext(conf);
List<String> names = Arrays.asList("w1","w2","w3","w4","w5","w6");

JavaRDD<String> nameRdd = sc.parallelize(names,2);

JavaRDD<String> namefristRdd = nameRdd.mapPartitionsWithIndex(new Function2<Integer, Iterator<String>, Iterator<String>>() {
@Override
public Iterator<String> call(Integer index, Iterator<String> iterator) throws Exception {

List<String> list = new ArrayList<>();
while (iterator.hasNext()){
list.add("1["+index+"]"+iterator.next());
}
return list.iterator();
}
},true);

//增長分區
JavaRDD<String> temp = namefristRdd.repartition(5);

JavaRDD<String> nameseconedRdd = temp.mapPartitionsWithIndex(new Function2<Integer, Iterator<String>, Iterator<String>>() {
@Override
public Iterator<String> call(Integer index, Iterator<String> iterator) throws Exception {
List<String> list = new ArrayList<>();
while (iterator.hasNext()){
list.add("2["+index+"]:"+iterator.next());
}
return list.iterator();
}
},false);


nameseconedRdd.foreach(new VoidFunction<String>() {
@Override
public void call(String s) throws Exception {
System.err.println(s);
}
});

}
}

微信掃描下圖二維碼加入博主知識星球,獲取更多大數據、人工智能、算法等免費學習資料哦!
相關文章
相關標籤/搜索