spark 2.1.1java
spark裏執行sql報錯sql
insert overwrite table test_parquet_table select * from dummyapache
報錯以下:app
org.apache.spark.SparkException: Task failed while writing rows.
at org.apache.spark.sql.hive.SparkHiveDynamicPartitionWriterContainer.writeToFile(hiveWriterContainers.scala:333)
at org.apache.spark.sql.hive.execution.InsertIntoHiveTable$$anonfun$saveAsHiveFile$3.apply(InsertIntoHiveTable.scala:210)
at org.apache.spark.sql.hive.execution.InsertIntoHiveTable$$anonfun$saveAsHiveFile$3.apply(InsertIntoHiveTable.scala:210)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
at org.apache.spark.scheduler.Task.run(Task.scala:99)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:322)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
Caused by: java.lang.RuntimeException: Parquet record is malformed: empty fields are illegal, the field should be ommited completely instead
at org.apache.hadoop.hive.ql.io.parquet.write.DataWritableWriter.write(DataWritableWriter.java:64)
at org.apache.hadoop.hive.ql.io.parquet.write.DataWritableWriteSupport.write(DataWritableWriteSupport.java:59)
at org.apache.hadoop.hive.ql.io.parquet.write.DataWritableWriteSupport.write(DataWritableWriteSupport.java:31)
at parquet.hadoop.InternalParquetRecordWriter.write(InternalParquetRecordWriter.java:121)
at parquet.hadoop.ParquetRecordWriter.write(ParquetRecordWriter.java:123)
at parquet.hadoop.ParquetRecordWriter.write(ParquetRecordWriter.java:42)
at org.apache.hadoop.hive.ql.io.parquet.write.ParquetRecordWriterWrapper.write(ParquetRecordWriterWrapper.java:111)
at org.apache.hadoop.hive.ql.io.parquet.write.ParquetRecordWriterWrapper.write(ParquetRecordWriterWrapper.java:124)
at org.apache.spark.sql.hive.SparkHiveDynamicPartitionWriterContainer.writeToFile(hiveWriterContainers.scala:321)
... 8 more
Caused by: parquet.io.ParquetEncodingException: empty fields are illegal, the field should be ommited completely instead
at parquet.io.MessageColumnIO$MessageColumnIORecordConsumer.endField(MessageColumnIO.java:244)
at org.apache.hadoop.hive.ql.io.parquet.write.DataWritableWriter.writeMap(DataWritableWriter.java:241)
at org.apache.hadoop.hive.ql.io.parquet.write.DataWritableWriter.writeValue(DataWritableWriter.java:116)
at org.apache.hadoop.hive.ql.io.parquet.write.DataWritableWriter.writeGroupFields(DataWritableWriter.java:89)
at org.apache.hadoop.hive.ql.io.parquet.write.DataWritableWriter.write(DataWritableWriter.java:60)
... 16 more函數
跟進代碼
org.apache.hadoop.hive.ql.io.parquet.write.DataWritableWriteroop
private void writeMap(Object value, MapObjectInspector inspector, GroupType type) { GroupType repeatedType = type.getType(0).asGroupType(); this.recordConsumer.startGroup(); this.recordConsumer.startField(repeatedType.getName(), 0); Map<?, ?> mapValues = inspector.getMap(value); Type keyType = repeatedType.getType(0); String keyName = keyType.getName(); ObjectInspector keyInspector = inspector.getMapKeyObjectInspector(); Type valuetype = repeatedType.getType(1); String valueName = valuetype.getName(); ObjectInspector valueInspector = inspector.getMapValueObjectInspector(); for(Iterator i$ = mapValues.entrySet().iterator(); i$.hasNext(); this.recordConsumer.endGroup()) { Entry<?, ?> keyValue = (Entry)i$.next(); this.recordConsumer.startGroup(); if (keyValue != null) { Object keyElement = keyValue.getKey(); this.recordConsumer.startField(keyName, 0); this.writeValue(keyElement, keyInspector, keyType); this.recordConsumer.endField(keyName, 0); Object valueElement = keyValue.getValue(); if (valueElement != null) { this.recordConsumer.startField(valueName, 1); this.writeValue(valueElement, valueInspector, valuetype); this.recordConsumer.endField(valueName, 1); } } } this.recordConsumer.endField(repeatedType.getName(), 0); this.recordConsumer.endGroup(); } private void writeValue(Object value, ObjectInspector inspector, Type type) { if (type.isPrimitive()) { this.checkInspectorCategory(inspector, Category.PRIMITIVE); this.writePrimitive(value, (PrimitiveObjectInspector)inspector); } else { GroupType groupType = type.asGroupType(); OriginalType originalType = type.getOriginalType(); if (originalType != null && originalType.equals(OriginalType.LIST)) { this.checkInspectorCategory(inspector, Category.LIST); this.writeArray(value, (ListObjectInspector)inspector, groupType); } else if (originalType != null && originalType.equals(OriginalType.MAP)) { this.checkInspectorCategory(inspector, Category.MAP); this.writeMap(value, (MapObjectInspector)inspector, groupType); } else { this.checkInspectorCategory(inspector, Category.STRUCT); this.writeGroup(value, (StructObjectInspector)inspector, groupType); } } } private void writePrimitive(Object value, PrimitiveObjectInspector inspector) { if (value != null) { switch(inspector.getPrimitiveCategory()) { case VOID: return; case DOUBLE: this.recordConsumer.addDouble(((DoubleObjectInspector)inspector).get(value)); break; case BOOLEAN: this.recordConsumer.addBoolean(((BooleanObjectInspector)inspector).get(value)); break; case FLOAT: this.recordConsumer.addFloat(((FloatObjectInspector)inspector).get(value)); break; case BYTE: this.recordConsumer.addInteger(((ByteObjectInspector)inspector).get(value)); break; case INT: this.recordConsumer.addInteger(((IntObjectInspector)inspector).get(value)); break; case LONG: this.recordConsumer.addLong(((LongObjectInspector)inspector).get(value)); break; case SHORT: this.recordConsumer.addInteger(((ShortObjectInspector)inspector).get(value)); break; case STRING: String v = ((StringObjectInspector)inspector).getPrimitiveJavaObject(value); this.recordConsumer.addBinary(Binary.fromString(v)); break; case CHAR: String vChar = ((HiveCharObjectInspector)inspector).getPrimitiveJavaObject(value).getStrippedValue(); this.recordConsumer.addBinary(Binary.fromString(vChar)); break; case VARCHAR: String vVarchar = ((HiveVarcharObjectInspector)inspector).getPrimitiveJavaObject(value).getValue(); this.recordConsumer.addBinary(Binary.fromString(vVarchar)); break; case BINARY: byte[] vBinary = ((BinaryObjectInspector)inspector).getPrimitiveJavaObject(value); this.recordConsumer.addBinary(Binary.fromByteArray(vBinary)); break; case TIMESTAMP: Timestamp ts = ((TimestampObjectInspector)inspector).getPrimitiveJavaObject(value); this.recordConsumer.addBinary(NanoTimeUtils.getNanoTime(ts, false).toBinary()); break; case DECIMAL: HiveDecimal vDecimal = (HiveDecimal)inspector.getPrimitiveJavaObject(value); DecimalTypeInfo decTypeInfo = (DecimalTypeInfo)inspector.getTypeInfo(); this.recordConsumer.addBinary(this.decimalToBinary(vDecimal, decTypeInfo)); break; case DATE: Date vDate = ((DateObjectInspector)inspector).getPrimitiveJavaObject(value); this.recordConsumer.addInteger(DateWritable.dateToDays(vDate)); break; default: throw new IllegalArgumentException("Unsupported primitive data type: " + inspector.getPrimitiveCategory()); } } }
parquet.io.MessageColumnIO.MessageColumnIORecordConsumerthis
public void startField(String field, int index) { try { if (MessageColumnIO.DEBUG) { this.log("startField(" + field + ", " + index + ")"); } this.currentColumnIO = ((GroupColumnIO)this.currentColumnIO).getChild(index); this.emptyField = true; if (MessageColumnIO.DEBUG) { this.printState(); } } catch (RuntimeException var4) { throw new ParquetEncodingException("error starting field " + field + " at " + index, var4); } } public void endField(String field, int index) { if (MessageColumnIO.DEBUG) { this.log("endField(" + field + ", " + index + ")"); } this.currentColumnIO = this.currentColumnIO.getParent(); if (this.emptyField) { throw new ParquetEncodingException("empty fields are illegal, the field should be ommited completely instead"); } else { this.fieldsWritten[this.currentLevel].markWritten(index); this.r[this.currentLevel] = this.currentLevel == 0 ? 0 : this.r[this.currentLevel - 1]; if (MessageColumnIO.DEBUG) { this.printState(); } } } public void addInteger(int value) { if (MessageColumnIO.DEBUG) { this.log("addInt(" + value + ")"); } this.emptyField = false; this.getColumnWriter().write(value, this.r[this.currentLevel], this.currentColumnIO.getDefinitionLevel()); this.setRepetitionLevel(); if (MessageColumnIO.DEBUG) { this.printState(); } }
DataWritableWriter報錯的關鍵代碼是這幾行spa
Object keyElement = keyValue.getKey(); this.recordConsumer.startField(keyName, 0); this.writeValue(keyElement, keyInspector, keyType); this.recordConsumer.endField(keyName, 0);
代碼流程梳理以下:scala
DataWritableWriter.writeMapcode
MessageColumnIORecordConsumer.startField
註釋:this.emptyField = true;
迭代entry
處理key
Object keyElement = keyValue.getKey();
MessageColumnIORecordConsumer.startField
DataWritableWriter.writeValue
DataWritableWriter.isPrimitive
DataWritableWriter.writePrimitive
1)if (value == null) 或是Void
註釋:this.emptyField依舊爲true
2)if (value != null) MessageColumnIORecordConsumer.addInteger
註釋:this.emptyField = false;
MessageColumnIORecordConsumer.endField
MessageColumnIORecordConsumer.endField
註釋:if (this.emptyField) {throw new ParquetEncodingException("empty fields are illegal, the field should be ommited completely instead");}
當map<?,?>或array<?>類型的列插入空集合或者map中存在key爲null的情形時,就會觸發這個錯誤,
後來發現官方已經有討論:https://issues.apache.org/jira/browse/HIVE-11625
要避免這個問題有兩種方式:
1 改用hive執行sql;
2 增長udf函數filter_map,當map爲空集合時置爲null,當map不爲空集合時過濾掉map值中全部key爲null的entry
spark.udf.register("filter_map", ((map : Map[String, String]) => {if (map != null && !map.isEmpty) map.filter(_._1 != null) else null}))