JavaShuo
欄目
標籤
[paper]AdvJND:Generating Adversarial Examples with Just Noticeable Difference
時間 2020-12-30
標籤
AEs
機器學習
深度學習
計算機視覺
欄目
系統安全
简体版
原文
原文鏈接
生成對抗樣本有兩個要求:攻擊成功率和圖像保真度指標。 增加擾動可以確保對抗樣本的攻擊成功率很高; 但是生成的對抗樣本隱蔽性很差。 爲了在攻擊成功率和圖像保真度之間取折衷,提出了一種名爲AdvJND的方法,該方法在生成對抗樣本時在失真函數的約束下添加了視覺模型係數,該係數用來衡量視覺上的差異。AdvJND算法生成的對抗樣本產生的梯度分佈與原始輸入相似。該方法可以認爲是一種輔助生成方法,用來改善生成算
>>阅读原文<<
相關文章
1.
[advGAN]Generating Adversarial Examples With Adversarial Networks
2.
Generating Adversarial Examples with Adversarial Networks
3.
Generating Adversarial Examples with Adversarial Networks閱讀筆記
4.
Paper Review: Adversarial Examples
5.
Certified Robustness to Adversarial Examples with Differential Privacy
6.
SPATIALLY TRANSFORMED ADVERSARIAL EXAMPLES
7.
Explaining and Harnessing Adversarial Examples
8.
[paper]SPATIALLY TRANSFORMED ADVERSARIAL EXAMPLES
9.
Adversarial Examples 對抗樣本
10.
CS231n Lecture 16 | Adversarial Examples and Adversarial Training
更多相關文章...
•
XPath Examples
-
XPath 教程
•
XSLT
元素
-
XSLT 教程
•
RxJava操作符(一)Creating Observables
•
RxJava操作符(七)Conditional and Boolean
相關標籤/搜索
examples
adversarial
difference
with+this
with...connect
with...as
by...with
Just For Fun
Just Do 8
快樂工作
系統安全
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
在windows下的虛擬機中,安裝華爲電腦的deepin操作系統
2.
強烈推薦款下載不限速解析神器
3.
【區塊鏈技術】孫宇晨:區塊鏈技術帶來金融服務的信任變革
4.
搜索引起的鏈接分析-計算網頁的重要性
5.
TiDB x 微衆銀行 | 耗時降低 58%,分佈式架構助力實現普惠金融
6.
《數字孿生體技術白皮書》重磅發佈(附完整版下載)
7.
雙十一「避坑」指南:區塊鏈電子合同爲電商交易保駕護航!
8.
區塊鏈產業,怎樣「鏈」住未來?
9.
OpenglRipper使用教程
10.
springcloud請求一次好用一次不好用zuul Name or service not known
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
[advGAN]Generating Adversarial Examples With Adversarial Networks
2.
Generating Adversarial Examples with Adversarial Networks
3.
Generating Adversarial Examples with Adversarial Networks閱讀筆記
4.
Paper Review: Adversarial Examples
5.
Certified Robustness to Adversarial Examples with Differential Privacy
6.
SPATIALLY TRANSFORMED ADVERSARIAL EXAMPLES
7.
Explaining and Harnessing Adversarial Examples
8.
[paper]SPATIALLY TRANSFORMED ADVERSARIAL EXAMPLES
9.
Adversarial Examples 對抗樣本
10.
CS231n Lecture 16 | Adversarial Examples and Adversarial Training
>>更多相關文章<<