JavaShuo
欄目
標籤
[paper]AdvJND:Generating Adversarial Examples with Just Noticeable Difference
時間 2020-12-30
標籤
AEs
機器學習
深度學習
計算機視覺
欄目
系統安全
简体版
原文
原文鏈接
生成對抗樣本有兩個要求:攻擊成功率和圖像保真度指標。 增加擾動可以確保對抗樣本的攻擊成功率很高; 但是生成的對抗樣本隱蔽性很差。 爲了在攻擊成功率和圖像保真度之間取折衷,提出了一種名爲AdvJND的方法,該方法在生成對抗樣本時在失真函數的約束下添加了視覺模型係數,該係數用來衡量視覺上的差異。AdvJND算法生成的對抗樣本產生的梯度分佈與原始輸入相似。該方法可以認爲是一種輔助生成方法,用來改善生成算
>>阅读原文<<
相關文章
1.
[advGAN]Generating Adversarial Examples With Adversarial Networks
2.
Generating Adversarial Examples with Adversarial Networks
3.
Generating Adversarial Examples with Adversarial Networks閱讀筆記
4.
Paper Review: Adversarial Examples
5.
Certified Robustness to Adversarial Examples with Differential Privacy
6.
SPATIALLY TRANSFORMED ADVERSARIAL EXAMPLES
7.
Explaining and Harnessing Adversarial Examples
8.
[paper]SPATIALLY TRANSFORMED ADVERSARIAL EXAMPLES
9.
Adversarial Examples 對抗樣本
10.
CS231n Lecture 16 | Adversarial Examples and Adversarial Training
更多相關文章...
•
XPath Examples
-
XPath 教程
•
XSLT
元素
-
XSLT 教程
•
RxJava操作符(一)Creating Observables
•
RxJava操作符(七)Conditional and Boolean
相關標籤/搜索
examples
adversarial
difference
with+this
with...connect
with...as
by...with
Just For Fun
Just Do 8
快樂工作
系統安全
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
shell編譯問題
2.
mipsel 編譯問題
3.
添加xml
4.
直方圖均衡化
5.
FL Studio鋼琴卷軸之畫筆工具
6.
中小企業爲什麼要用CRM系統
7.
Github | MelGAN 超快音頻合成源碼開源
8.
VUE生產環境打包build
9.
RVAS(rare variant association study)知識
10.
不看後悔系列!DTS 控制檯入門一本通(附網盤鏈接)
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
[advGAN]Generating Adversarial Examples With Adversarial Networks
2.
Generating Adversarial Examples with Adversarial Networks
3.
Generating Adversarial Examples with Adversarial Networks閱讀筆記
4.
Paper Review: Adversarial Examples
5.
Certified Robustness to Adversarial Examples with Differential Privacy
6.
SPATIALLY TRANSFORMED ADVERSARIAL EXAMPLES
7.
Explaining and Harnessing Adversarial Examples
8.
[paper]SPATIALLY TRANSFORMED ADVERSARIAL EXAMPLES
9.
Adversarial Examples 對抗樣本
10.
CS231n Lecture 16 | Adversarial Examples and Adversarial Training
>>更多相關文章<<