異步io\數據庫\隊列\緩存

本節內容html

  1. Gevent協程
  2. Select\Poll\Epoll異步IO與事件驅動
  3. Python鏈接Mysql數據庫操做
  4. RabbitMQ隊列
  5. Redis\Memcached緩存
  6. Paramiko SSH
  7. Twsited網絡框架

 

引子

到目前爲止,咱們已經學了網絡併發編程的2個套路, 多進程,多線程,這哥倆的優點和劣勢都很是的明顯,咱們一塊兒來回顧下python

協程

協程,又稱微線程,纖程。英文名Coroutine。一句話說明什麼是線程:協程是一種用戶態的輕量級線程mysql

協程擁有本身的寄存器上下文和棧。協程調度切換時,將寄存器上下文和棧保存到其餘地方,在切回來的時候,恢復先前保存的寄存器上下文和棧。所以:react

協程能保留上一次調用時的狀態(即全部局部狀態的一個特定組合),每次過程重入時,就至關於進入上一次調用的狀態,換種說法:進入上一次離開時所處邏輯流的位置。git

 

協程的好處:程序員

  • 無需線程上下文切換的開銷
  • 無需原子操做鎖定及同步的開銷
    •   "原子操做(atomic operation)是不須要synchronized",所謂原子操做是指不會被線程調度機制打斷的操做;這種操做一旦開始,就一直運行到結束,中間不會有任何 context switch (切換到另外一個線程)。原子操做能夠是一個步驟,也能夠是多個操做步驟,可是其順序是不能夠被打亂,或者切割掉只執行部分。視做總體是原子性的核心。
  • 方便切換控制流,簡化編程模型
  • 高併發+高擴展性+低成本:一個CPU支持上萬的協程都不是問題。因此很適合用於高併發處理。

 

缺點:github

  • 沒法利用多核資源:協程的本質是個單線程,它不能同時將 單個CPU 的多個核用上,協程須要和進程配合才能運行在多CPU上.固然咱們平常所編寫的絕大部分應用都沒有這個必要,除非是cpu密集型應用。
  • 進行阻塞(Blocking)操做(如IO時)會阻塞掉整個程序

使用yield實現協程操做例子    redis

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
import  time
import  queue
def  consumer(name):
     print ( "--->starting eating baozi..." )
     while  True :
         new_baozi  =  yield
         print ( "[%s] is eating baozi %s"  %  (name,new_baozi))
         #time.sleep(1)
 
def  producer():
 
     =  con.__next__()
     =  con2.__next__()
     =  0
     while  n <  5 :
         + = 1
         con.send(n)
         con2.send(n)
         print ( "\033[32;1m[producer]\033[0m is making baozi %s"  % n )
 
 
if  __name__  = =  '__main__' :
     con  =  consumer( "c1" )
     con2  =  consumer( "c2" )
     =  producer()

看樓上的例子,我問你這算不算作是協程呢?你說,我他媽哪知道呀,你前面說了一堆廢話,可是並沒告訴我協程的標準形態呀,我腚眼一想,以爲你說也對,那好,咱們先給協程一個標準定義,即符合什麼條件就能稱之爲協程:sql

  1. 必須在只有一個單線程裏實現併發
  2. 修改共享數據不需加鎖
  3. 用戶程序裏本身保存多個控制流的上下文棧
  4. 一個協程遇到IO操做自動切換到其它協程

基於上面這4點定義,咱們剛纔用yield實現的程並不能算是合格的線程,由於它有一點功能沒實現,哪一點呢?數據庫

Greenlet

greenlet是一個用C實現的協程模塊,相比與python自帶的yield,它可使你在任意函數之間隨意切換,而不需把這個函數先聲明爲generator

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
# -*- coding:utf-8 -*-
 
 
from  greenlet  import  greenlet
 
 
def  test1():
     print ( 12 )
     gr2.switch()
     print ( 34 )
     gr2.switch()
 
 
def  test2():
     print ( 56 )
     gr1.switch()
     print ( 78 )
 
 
gr1  =  greenlet(test1)
gr2  =  greenlet(test2)
gr1.switch()

感受確實用着比generator還簡單了呢,但好像尚未解決一個問題,就是遇到IO操做,自動切換,對不對?

Gevent 

Gevent 是一個第三方庫,能夠輕鬆經過gevent實現併發同步或異步編程,在gevent中用到的主要模式是Greenlet, 它是以C擴展模塊形式接入Python的輕量級協程。 Greenlet所有運行在主程序操做系統進程的內部,但它們被協做式地調度。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
import  gevent
 
def  func1():
     print ( '\033[31;1m李闖在跟海濤搞...\033[0m' )
     gevent.sleep( 2 )
     print ( '\033[31;1m李闖又回去跟繼續跟海濤搞...\033[0m' )
 
def  func2():
     print ( '\033[32;1m李闖切換到了跟海龍搞...\033[0m' )
     gevent.sleep( 1 )
     print ( '\033[32;1m李闖搞完了海濤,回來繼續跟海龍搞...\033[0m' )
 
 
gevent.joinall([
     gevent.spawn(func1),
     gevent.spawn(func2),
     #gevent.spawn(func3),
])

輸出:

李闖在跟海濤搞...
李闖切換到了跟海龍搞...
李闖搞完了海濤,回來繼續跟海龍搞...

李闖又回去跟繼續跟海濤搞...

同步與異步的性能區別 

import gevent
 
def task(pid):
    """
    Some non-deterministic task
    """
    gevent.sleep(0.5)
    print('Task %s done' % pid)
 
def synchronous():
    for i in range(1,10):
        task(i)
 
def asynchronous():
    threads = [gevent.spawn(task, i) for i in range(10)]
    gevent.joinall(threads)
 
print('Synchronous:')
synchronous()
 
print('Asynchronous:')
asynchronous()

上面程序的重要部分是將task函數封裝到Greenlet內部線程的gevent.spawn。 初始化的greenlet列表存放在數組threads中,此數組被傳給gevent.joinall 函數,後者阻塞當前流程,並執行全部給定的greenlet。執行流程只會在 全部greenlet執行完後纔會繼續向下走。  

遇到IO阻塞時會自動切換任務

from gevent import monkey; monkey.patch_all()
import gevent
from  urllib.request import urlopen
 
def f(url):
    print('GET: %s' % url)
    resp = urlopen(url)
    data = resp.read()
    print('%d bytes received from %s.' % (len(data), url))
 
gevent.joinall([
        gevent.spawn(f, 'https://www.python.org/'),
        gevent.spawn(f, 'https://www.yahoo.com/'),
        gevent.spawn(f, 'https://github.com/'),
])

經過gevent實現單線程下的多socket併發

server side 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
import  sys
import  socket
import  time
import  gevent
 
from  gevent  import  socket,monkey
monkey.patch_all()
 
 
def  server(port):
     =  socket.socket()
     s.bind(( '0.0.0.0' , port))
     s.listen( 500 )
     while  True :
         cli, addr  =  s.accept()
         gevent.spawn(handle_request, cli)
 
 
 
def  handle_request(conn):
     try :
         while  True :
             data  =  conn.recv( 1024 )
             print ( "recv:" , data)
             conn.send(data)
             if  not  data:
                 conn.shutdown(socket.SHUT_WR)
 
     except  Exception as  ex:
         print (ex)
     finally :
         conn.close()
if  __name__  = =  '__main__' :
     server( 8001 )

client side   

import socket
 
HOST = 'localhost'    # The remote host
PORT = 8001           # The same port as used by the server
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.connect((HOST, PORT))
while True:
    msg = bytes(input(">>:"),encoding="utf8")
    s.sendall(msg)
    data = s.recv(1024)
    #print(data)
 
    print('Received', repr(data))
s.close()
import socket
import threading

def sock_conn():

    client = socket.socket()

    client.connect(("localhost",8001))
    count = 0
    while True:
        #msg = input(">>:").strip()
        #if len(msg) == 0:continue
        client.send( ("hello %s" %count).encode("utf-8"))

        data = client.recv(1024)

        print("[%s]recv from server:" % threading.get_ident(),data.decode()) #結果
        count +=1
    client.close()


for i in range(100):
    t = threading.Thread(target=sock_conn)
    t.start()
併發100個sock鏈接

 

論事件驅動與異步IO

一般,咱們寫服務器處理模型的程序時,有如下幾種模型:
(1)每收到一個請求,建立一個新的進程,來處理該請求;
(2)每收到一個請求,建立一個新的線程,來處理該請求;
(3)每收到一個請求,放入一個事件列表,讓主進程經過非阻塞I/O方式來處理請求
上面的幾種方式,各有千秋,
第(1)中方法,因爲建立新的進程的開銷比較大,因此,會致使服務器性能比較差,但實現比較簡單。
第(2)種方式,因爲要涉及到線程的同步,有可能會面臨 死鎖等問題。
第(3)種方式,在寫應用程序代碼時,邏輯比前面兩種都複雜。
綜合考慮各方面因素,通常廣泛認爲第(3)種方式是大多數 網絡服務器採用的方式
 

看圖說話講事件驅動模型

在UI編程中,經常要對鼠標點擊進行相應,首先如何得到鼠標點擊呢?
方式一:建立一個線程,該線程一直循環檢測是否有鼠標點擊,那麼這個方式有如下幾個缺點
1. CPU資源浪費,可能鼠標點擊的頻率很是小,可是掃描線程仍是會一直循環檢測,這會形成不少的CPU資源浪費;若是掃描鼠標點擊的接口是阻塞的呢?
2. 若是是堵塞的,又會出現下面這樣的問題,若是咱們不但要掃描鼠標點擊,還要掃描鍵盤是否按下,因爲掃描鼠標時被堵塞了,那麼可能永遠不會去掃描鍵盤;
3. 若是一個循環須要掃描的設備很是多,這又會引來響應時間的問題;
因此,該方式是很是很差的。

方式二:就是事件驅動模型
目前大部分的UI編程都是事件驅動模型,如不少UI平臺都會提供onClick()事件,這個事件就表明鼠標按下事件。事件驅動模型大致思路以下:
1. 有一個事件(消息)隊列;
2. 鼠標按下時,往這個隊列中增長一個點擊事件(消息);
3. 有個循環,不斷從隊列取出事件,根據不一樣的事件,調用不一樣的函數,如onClick()、onKeyDown()等;
4. 事件(消息)通常都各自保存各自的處理函數指針,這樣,每一個消息都有獨立的處理函數;

 

 

 

事件驅動編程是一種編程範式,這裏程序的執行流由外部事件來決定。它的特色是包含一個事件循環,當外部事件發生時使用回調機制來觸發相應的處理。另外兩種常見的編程範式是(單線程)同步以及多線程編程。

讓咱們用例子來比較和對比一下單線程、多線程以及事件驅動編程模型。下圖展現了隨着時間的推移,這三種模式下程序所作的工做。這個程序有3個任務須要完成,每一個任務都在等待I/O操做時阻塞自身。阻塞在I/O操做上所花費的時間已經用灰色框標示出來了。

 

 

在單線程同步模型中,任務按照順序執行。若是某個任務由於I/O而阻塞,其餘全部的任務都必須等待,直到它完成以後它們才能依次執行。這種明確的執行順序和串行化處理的行爲是很容易推斷得出的。若是任務之間並無互相依賴的關係,但仍然須要互相等待的話這就使得程序沒必要要的下降了運行速度。

在多線程版本中,這3個任務分別在獨立的線程中執行。這些線程由操做系統來管理,在多處理器系統上能夠並行處理,或者在單處理器系統上交錯執行。這使得當某個線程阻塞在某個資源的同時其餘線程得以繼續執行。與完成相似功能的同步程序相比,這種方式更有效率,但程序員必須寫代碼來保護共享資源,防止其被多個線程同時訪問。多線程程序更加難以推斷,由於這類程序不得不經過線程同步機制如鎖、可重入函數、線程局部存儲或者其餘機制來處理線程安全問題,若是實現不當就會致使出現微妙且使人痛不欲生的bug。

在事件驅動版本的程序中,3個任務交錯執行,但仍然在一個單獨的線程控制中。當處理I/O或者其餘昂貴的操做時,註冊一個回調到事件循環中,而後當I/O操做完成時繼續執行。回調描述了該如何處理某個事件。事件循環輪詢全部的事件,當事件到來時將它們分配給等待處理事件的回調函數。這種方式讓程序儘量的得以執行而不須要用到額外的線程。事件驅動型程序比多線程程序更容易推斷出行爲,由於程序員不須要關心線程安全問題。

當咱們面對以下的環境時,事件驅動模型一般是一個好的選擇:

  1. 程序中有許多任務,並且…
  2. 任務之間高度獨立(所以它們不須要互相通訊,或者等待彼此)並且…
  3. 在等待事件到來時,某些任務會阻塞。

當應用程序須要在任務間共享可變的數據時,這也是一個不錯的選擇,由於這裏不須要採用同步處理。

網絡應用程序一般都有上述這些特色,這使得它們可以很好的契合事件驅動編程模型。

 

此處要提出一個問題,就是,上面的事件驅動模型中,只要一遇到IO就註冊一個事件,而後主程序就能夠繼續幹其它的事情了,只到io處理完畢後,繼續恢復以前中斷的任務,這本質上是怎麼實現的呢?哈哈,下面咱們就來一塊兒揭開這神祕的面紗。。。。

 

 

Select\Poll\Epoll異步IO 

http://www.cnblogs.com/alex3714/p/4372426.html 

番外篇 http://www.cnblogs.com/alex3714/articles/5876749.html 

select 多併發socket 例子

#_*_coding:utf-8_*_
__author__ = 'Alex Li'

import select
import socket
import sys
import queue


server = socket.socket()
server.setblocking(0)

server_addr = ('localhost',10000)

print('starting up on %s port %s' % server_addr)
server.bind(server_addr)

server.listen(5)


inputs = [server, ] #本身也要監測呀,由於server自己也是個fd
outputs = []

message_queues = {}

while True:
    print("waiting for next event...")

    readable, writeable, exeptional = select.select(inputs,outputs,inputs) #若是沒有任何fd就緒,那程序就會一直阻塞在這裏

    for s in readable: #每一個s就是一個socket

        if s is server: #別忘記,上面咱們server本身也當作一個fd放在了inputs列表裏,傳給了select,若是這個s是server,表明server這個fd就緒了,
            #就是有活動了, 什麼狀況下它纔有活動? 固然 是有新鏈接進來的時候 呀
            #新鏈接進來了,接受這個鏈接
            conn, client_addr = s.accept()
            print("new connection from",client_addr)
            conn.setblocking(0)
            inputs.append(conn) #爲了避免阻塞整個程序,咱們不會馬上在這裏開始接收客戶端發來的數據, 把它放到inputs裏, 下一次loop時,這個新鏈接
            #就會被交給select去監聽,若是這個鏈接的客戶端發來了數據 ,那這個鏈接的fd在server端就會變成就續的,select就會把這個鏈接返回,返回到
            #readable 列表裏,而後你就能夠loop readable列表,取出這個鏈接,開始接收數據了, 下面就是這麼幹 的

            message_queues[conn] = queue.Queue() #接收到客戶端的數據後,不馬上返回 ,暫存在隊列裏,之後發送

        else: #s不是server的話,那就只能是一個 與客戶端創建的鏈接的fd了
            #客戶端的數據過來了,在這接收
            data = s.recv(1024)
            if data:
                print("收到來自[%s]的數據:" % s.getpeername()[0], data)
                message_queues[s].put(data) #收到的數據先放到queue裏,一會返回給客戶端
                if s not  in outputs:
                    outputs.append(s) #爲了避免影響處理與其它客戶端的鏈接 , 這裏不馬上返回數據給客戶端


            else:#若是收不到data表明什麼呢? 表明客戶端斷開了呀
                print("客戶端斷開了",s)

                if s in outputs:
                    outputs.remove(s) #清理已斷開的鏈接

                inputs.remove(s) #清理已斷開的鏈接

                del message_queues[s] ##清理已斷開的鏈接


    for s in writeable:
        try :
            next_msg = message_queues[s].get_nowait()

        except queue.Empty:
            print("client [%s]" %s.getpeername()[0], "queue is empty..")
            outputs.remove(s)

        else:
            print("sending msg to [%s]"%s.getpeername()[0], next_msg)
            s.send(next_msg.upper())


    for s in exeptional:
        print("handling exception for ",s.getpeername())
        inputs.remove(s)
        if s in outputs:
            outputs.remove(s)
        s.close()

        del message_queues[s]
select socket server

 

#_*_coding:utf-8_*_
__author__ = 'Alex Li'


import socket
import sys

messages = [ b'This is the message. ',
             b'It will be sent ',
             b'in parts.',
             ]
server_address = ('localhost', 10000)

# Create a TCP/IP socket
socks = [ socket.socket(socket.AF_INET, socket.SOCK_STREAM),
          socket.socket(socket.AF_INET, socket.SOCK_STREAM),
          ]

# Connect the socket to the port where the server is listening
print('connecting to %s port %s' % server_address)
for s in socks:
    s.connect(server_address)

for message in messages:

    # Send messages on both sockets
    for s in socks:
        print('%s: sending "%s"' % (s.getsockname(), message) )
        s.send(message)

    # Read responses on both sockets
    for s in socks:
        data = s.recv(1024)
        print( '%s: received "%s"' % (s.getsockname(), data) )
        if not data:
            print(sys.stderr, 'closing socket', s.getsockname() )
select socket client

 

selectors模塊

This module allows high-level and efficient I/O multiplexing, built upon the select module primitives. Users are encouraged to use this module instead, unless they want precise control over the OS-level primitives used.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
import  selectors
import  socket
 
sel  =  selectors.DefaultSelector()
 
def  accept(sock, mask):
     conn, addr  =  sock.accept()   # Should be ready
     print ( 'accepted' , conn,  'from' , addr)
     conn.setblocking( False )
     sel.register(conn, selectors.EVENT_READ, read)
 
def  read(conn, mask):
     data  =  conn.recv( 1000 )   # Should be ready
     if  data:
         print ( 'echoing' repr (data),  'to' , conn)
         conn.send(data)   # Hope it won't block
     else :
         print ( 'closing' , conn)
         sel.unregister(conn)
         conn.close()
 
sock  =  socket.socket()
sock.bind(( 'localhost' 10000 ))
sock.listen( 100 )
sock.setblocking( False )
sel.register(sock, selectors.EVENT_READ, accept)
 
while  True :
     events  =  sel.select()
     for  key, mask  in  events:
         callback  =  key.data
         callback(key.fileobj, mask)

  

數據庫操做與Paramiko模塊 

http://www.cnblogs.com/wupeiqi/articles/5095821.html 

RabbitMQ隊列  

安裝 http://www.rabbitmq.com/install-standalone-mac.html

安裝python rabbitMQ module 

1
2
3
4
5
6
7
pip install pika
or
easy_install pika
or
源碼
  
https: / / pypi.python.org / pypi / pika

實現最簡單的隊列通訊

send端

#!/usr/bin/env python
import pika
 
connection = pika.BlockingConnection(pika.ConnectionParameters(
               'localhost'))
channel = connection.channel()
 
#聲明queue
channel.queue_declare(queue='hello')
 
#n RabbitMQ a message can never be sent directly to the queue, it always needs to go through an exchange.
channel.basic_publish(exchange='',
                      routing_key='hello',
                      body='Hello World!')
print(" [x] Sent 'Hello World!'")
connection.close()

receive端

#_*_coding:utf-8_*_
__author__ = 'Alex Li'
import pika
 
connection = pika.BlockingConnection(pika.ConnectionParameters(
               'localhost'))
channel = connection.channel()
 
 
#You may ask why we declare the queue again ‒ we have already declared it in our previous code.
# We could avoid that if we were sure that the queue already exists. For example if send.py program
#was run before. But we're not yet sure which program to run first. In such cases it's a good
# practice to repeat declaring the queue in both programs.
channel.queue_declare(queue='hello')
 
def callback(ch, method, properties, body):
    print(" [x] Received %r" % body)
 
channel.basic_consume(callback,
                      queue='hello',
                      no_ack=True)
 
print(' [*] Waiting for messages. To exit press CTRL+C')
channel.start_consuming()

Work Queues

 

在這種模式下,RabbitMQ會默認把p發的消息依次分發給各個消費者(c),跟負載均衡差很少

消息提供者代碼

import pika
import time
connection = pika.BlockingConnection(pika.ConnectionParameters(
    'localhost'))
channel = connection.channel()
 
# 聲明queue
channel.queue_declare(queue='task_queue')
 
# n RabbitMQ a message can never be sent directly to the queue, it always needs to go through an exchange.
import sys
 
message = ' '.join(sys.argv[1:]) or "Hello World! %s" % time.time()
channel.basic_publish(exchange='',
                      routing_key='task_queue',
                      body=message,
                      properties=pika.BasicProperties(
                          delivery_mode=2,  # make message persistent
                      )
                      )
print(" [x] Sent %r" % message)
connection.close()

消費者代碼

#_*_coding:utf-8_*_
 
import pika, time
 
connection = pika.BlockingConnection(pika.ConnectionParameters(
    'localhost'))
channel = connection.channel()
 
 
def callback(ch, method, properties, body):
    print(" [x] Received %r" % body)
    time.sleep(20)
    print(" [x] Done")
    print("method.delivery_tag",method.delivery_tag)
    ch.basic_ack(delivery_tag=method.delivery_tag)
 
 
channel.basic_consume(callback,
                      queue='task_queue',
                      no_ack=True
                      )
 
print(' [*] Waiting for messages. To exit press CTRL+C')
channel.start_consuming()

此時,先啓動消息生產者,而後再分別啓動3個消費者,經過生產者多發送幾條消息,你會發現,這幾條消息會被依次分配到各個消費者身上  

Doing a task can take a few seconds. You may wonder what happens if one of the consumers starts a long task and dies with it only partly done. With our current code once RabbitMQ delivers message to the customer it immediately removes it from memory. In this case, if you kill a worker we will lose the message it was just processing. We'll also lose all the messages that were dispatched to this particular worker but were not yet handled.

But we don't want to lose any tasks. If a worker dies, we'd like the task to be delivered to another worker.

In order to make sure a message is never lost, RabbitMQ supports message acknowledgments. An ack(nowledgement) is sent back from the consumer to tell RabbitMQ that a particular message had been received, processed and that RabbitMQ is free to delete it.

If a consumer dies (its channel is closed, connection is closed, or TCP connection is lost) without sending an ack, RabbitMQ will understand that a message wasn't processed fully and will re-queue it. If there are other consumers online at the same time, it will then quickly redeliver it to another consumer. That way you can be sure that no message is lost, even if the workers occasionally die.

There aren't any message timeouts; RabbitMQ will redeliver the message when the consumer dies. It's fine even if processing a message takes a very, very long time.

Message acknowledgments are turned on by default. In previous examples we explicitly turned them off via the no_ack=True flag. It's time to remove this flag and send a proper acknowledgment from the worker, once we're done with a task.

1
2
3
4
5
6
7
8
def  callback(ch, method, properties, body):
     print  " [x] Received %r"  %  (body,)
     time.sleep( body.count( '.' ) )
     print  " [x] Done"
     ch.basic_ack(delivery_tag  =  method.delivery_tag)
 
channel.basic_consume(callback,
                       queue = 'hello' )

  Using this code we can be sure that even if you kill a worker using CTRL+C while it was processing a message, nothing will be lost. Soon after the worker dies all unacknowledged messages will be redelivered

    

消息持久化  

We have learned how to make sure that even if the consumer dies, the task isn't lost(by default, if wanna disable  use no_ack=True). But our tasks will still be lost if RabbitMQ server stops.

When RabbitMQ quits or crashes it will forget the queues and messages unless you tell it not to. Two things are required to make sure that messages aren't lost: we need to mark both the queue and messages as durable.

First, we need to make sure that RabbitMQ will never lose our queue. In order to do so, we need to declare it as durable:

1
channel.queue_declare(queue = 'hello' , durable = True )

  

Although this command is correct by itself, it won't work in our setup. That's because we've already defined a queue called hello which is not durable. RabbitMQ doesn't allow you to redefine an existing queue with different parameters and will return an error to any program that tries to do that. But there is a quick workaround - let's declare a queue with different name, for exampletask_queue:

1
channel.queue_declare(queue = 'task_queue' , durable = True )

  

This queue_declare change needs to be applied to both the producer and consumer code.

At that point we're sure that the task_queue queue won't be lost even if RabbitMQ restarts. Now we need to mark our messages as persistent - by supplying a delivery_mode property with a value 2.

1
2
3
4
5
6
channel.basic_publish(exchange = '',
                       routing_key = "task_queue" ,
                       body = message,
                       properties = pika.BasicProperties(
                          delivery_mode  =  2 # make message persistent
                       ))

  

消息公平分發

若是Rabbit只管按順序把消息發到各個消費者身上,不考慮消費者負載的話,極可能出現,一個機器配置不高的消費者那裏堆積了不少消息處理不完,同時配置高的消費者卻一直很輕鬆。爲解決此問題,能夠在各個消費者端,配置perfetch=1,意思就是告訴RabbitMQ在我這個消費者當前消息還沒處理完的時候就不要再給我發新消息了。

 

 

1
channel.basic_qos(prefetch_count = 1 )

 

 

帶消息持久化+公平分發的完整代碼

生產者端


#!/usr/bin/env python
import pika
import sys
 
connection = pika.BlockingConnection(pika.ConnectionParameters(
        host='localhost'))
channel = connection.channel()
 
channel.queue_declare(queue='task_queue', durable=True)
 
message = ' '.join(sys.argv[1:]) or "Hello World!"
channel.basic_publish(exchange='',
                      routing_key='task_queue',
                      body=message,
                      properties=pika.BasicProperties(
                         delivery_mode = 2, # make message persistent
                      ))
print(" [x] Sent %r" % message)
connection.close()



消費者端

#!/usr/bin/env python
import pika
import time
 
connection = pika.BlockingConnection(pika.ConnectionParameters(
        host='localhost'))
channel = connection.channel()
 
channel.queue_declare(queue='task_queue', durable=True)
print(' [*] Waiting for messages. To exit press CTRL+C')
 
def callback(ch, method, properties, body):
    print(" [x] Received %r" % body)
    time.sleep(body.count(b'.'))
    print(" [x] Done")
    ch.basic_ack(delivery_tag = method.delivery_tag)
 
channel.basic_qos(prefetch_count=1)
channel.basic_consume(callback,
                      queue='task_queue')
 
channel.start_consuming()

  

 

Publish\Subscribe(消息發佈\訂閱) 

以前的例子都基本都是1對1的消息發送和接收,即消息只能發送到指定的queue裏,但有些時候你想讓你的消息被全部的Queue收到,相似廣播的效果,這時候就要用到exchange了,

An exchange is a very simple thing. On one side it receives messages from producers and the other side it pushes them to queues. The exchange must know exactly what to do with a message it receives. Should it be appended to a particular queue? Should it be appended to many queues? Or should it get discarded. The rules for that are defined by the exchange type.

Exchange在定義的時候是有類型的,以決定究竟是哪些Queue符合條件,能夠接收消息


fanout: 全部bind到此exchange的queue均可以接收消息
direct: 經過routingKey和exchange決定的那個惟一的queue能夠接收消息
topic:全部符合routingKey(此時能夠是一個表達式)的routingKey所bind的queue能夠接收消息

   表達式符號說明:#表明一個或多個字符,*表明任何字符
      例:#.a會匹配a.a,aa.a,aaa.a等
          *.a會匹配a.a,b.a,c.a等
     注:使用RoutingKey爲#,Exchange Type爲topic的時候至關於使用fanout 

headers: 經過headers 來決定把消息發給哪些queue

消息publisher

消息publisher


import pika
import sys
 
connection = pika.BlockingConnection(pika.ConnectionParameters(
        host='localhost'))
channel = connection.channel()
 
channel.exchange_declare(exchange='logs',
                         type='fanout')
 
message = ' '.join(sys.argv[1:]) or "info: Hello World!"
channel.basic_publish(exchange='logs',
                      routing_key='',
                      body=message)
print(" [x] Sent %r" % message)
connection.close()





消息subscriber


#_*_coding:utf-8_*_
__author__ = 'Alex Li'
import pika
 
connection = pika.BlockingConnection(pika.ConnectionParameters(
        host='localhost'))
channel = connection.channel()
 
channel.exchange_declare(exchange='logs',
                         type='fanout')
 
result = channel.queue_declare(exclusive=True) #不指定queue名字,rabbit會隨機分配一個名字,exclusive=True會在使用此queue的消費者斷開後,自動將queue刪除
queue_name = result.method.queue
 
channel.queue_bind(exchange='logs',
                   queue=queue_name)
 
print(' [*] Waiting for logs. To exit press CTRL+C')
 
def callback(ch, method, properties, body):
    print(" [x] %r" % body)
 
channel.basic_consume(callback,
                      queue=queue_name,
                      no_ack=True)
 
channel.start_consuming()

有選擇的接收消息(exchange type=direct) 

RabbitMQ還支持根據關鍵字發送,即:隊列綁定關鍵字,發送者將數據根據關鍵字發送到消息exchange,exchange根據 關鍵字 斷定應該將數據發送至指定隊列。

 

publisher

import pika
import sys
 
connection = pika.BlockingConnection(pika.ConnectionParameters(
        host='localhost'))
channel = connection.channel()
 
channel.exchange_declare(exchange='direct_logs',
                         type='direct')
 
severity = sys.argv[1] if len(sys.argv) > 1 else 'info'
message = ' '.join(sys.argv[2:]) or 'Hello World!'
channel.basic_publish(exchange='direct_logs',
                      routing_key=severity,
                      body=message)
print(" [x] Sent %r:%r" % (severity, message))
connection.close()

subscriber

import pika
import sys
 
connection = pika.BlockingConnection(pika.ConnectionParameters(
        host='localhost'))
channel = connection.channel()
 
channel.exchange_declare(exchange='direct_logs',
                         type='direct')
 
result = channel.queue_declare(exclusive=True)
queue_name = result.method.queue
 
severities = sys.argv[1:]
if not severities:
    sys.stderr.write("Usage: %s [info] [warning] [error]\n" % sys.argv[0])
    sys.exit(1)
 
for severity in severities:
    channel.queue_bind(exchange='direct_logs',
                       queue=queue_name,
                       routing_key=severity)
 
print(' [*] Waiting for logs. To exit press CTRL+C')
 
def callback(ch, method, properties, body):
    print(" [x] %r:%r" % (method.routing_key, body))
 
channel.basic_consume(callback,
                      queue=queue_name,
                      no_ack=True)
 
channel.start_consuming()

更細緻的消息過濾

Although using the direct exchange improved our system, it still has limitations - it can't do routing based on multiple criteria.

In our logging system we might want to subscribe to not only logs based on severity, but also based on the source which emitted the log. You might know this concept from the syslog unix tool, which routes logs based on both severity (info/warn/crit...) and facility (auth/cron/kern...).

That would give us a lot of flexibility - we may want to listen to just critical errors coming from 'cron' but also all logs from 'kern'.

publisher


import pika
import sys
 
connection = pika.BlockingConnection(pika.ConnectionParameters(
        host='localhost'))
channel = connection.channel()
 
channel.exchange_declare(exchange='topic_logs',
                         type='topic')
 
routing_key = sys.argv[1] if len(sys.argv) > 1 else 'anonymous.info'
message = ' '.join(sys.argv[2:]) or 'Hello World!'
channel.basic_publish(exchange='topic_logs',
                      routing_key=routing_key,
                      body=message)
print(" [x] Sent %r:%r" % (routing_key, message))
connection.close()




subscriber
import pika import sys connection = pika.BlockingConnection(pika.ConnectionParameters( host='localhost')) channel = connection.channel() channel.exchange_declare(exchange='topic_logs', type='topic') result = channel.queue_declare(exclusive=True) queue_name = result.method.queue binding_keys = sys.argv[1:] if not binding_keys: sys.stderr.write("Usage: %s [binding_key]...\n" % sys.argv[0]) sys.exit(1) for binding_key in binding_keys: channel.queue_bind(exchange='topic_logs', queue=queue_name, routing_key=binding_key) print(' [*] Waiting for logs. To exit press CTRL+C') def callback(ch, method, properties, body): print(" [x] %r:%r" % (method.routing_key, body)) channel.basic_consume(callback, queue=queue_name, no_ack=True) channel.start_consuming()

To receive all the logs run:

python receive_logs_topic.py "#"

To receive all logs from the facility "kern":

python receive_logs_topic.py "kern.*"

Or if you want to hear only about "critical" logs:

python receive_logs_topic.py "*.critical"

You can create multiple bindings:

python receive_logs_topic.py "kern.*" "*.critical" 

And to emit a log with a routing key "kern.critical" type:

python emit_log_topic.py "kern.critical" "A critical kernel error"

  

Remote procedure call (RPC)

To illustrate how an RPC service could be used we're going to create a simple client class. It's going to expose a method named call which sends an RPC request and blocks until the answer is received:

1
2
3
fibonacci_rpc  =  FibonacciRpcClient()
result  =  fibonacci_rpc.call( 4 )
print ( "fib(4) is %r"  %  result)

RPC server

#_*_coding:utf-8_*_
__author__ = 'Alex Li'
import pika
import time
connection = pika.BlockingConnection(pika.ConnectionParameters(
        host='localhost'))
 
channel = connection.channel()
 
channel.queue_declare(queue='rpc_queue')
 
def fib(n):
    if n == 0:
        return 0
    elif n == 1:
        return 1
    else:
        return fib(n-1) + fib(n-2)
 
def on_request(ch, method, props, body):
    n = int(body)
 
    print(" [.] fib(%s)" % n)
    response = fib(n)
 
    ch.basic_publish(exchange='',
                     routing_key=props.reply_to,
                     properties=pika.BasicProperties(correlation_id = \
                                                         props.correlation_id),
                     body=str(response))
    ch.basic_ack(delivery_tag = method.delivery_tag)
 
channel.basic_qos(prefetch_count=1)
channel.basic_consume(on_request, queue='rpc_queue')
 
print(" [x] Awaiting RPC requests")
channel.start_consuming()

RPC client

import pika
import uuid
 
class FibonacciRpcClient(object):
    def __init__(self):
        self.connection = pika.BlockingConnection(pika.ConnectionParameters(
                host='localhost'))
 
        self.channel = self.connection.channel()
 
        result = self.channel.queue_declare(exclusive=True)
        self.callback_queue = result.method.queue
 
        self.channel.basic_consume(self.on_response, no_ack=True,
                                   queue=self.callback_queue)
 
    def on_response(self, ch, method, props, body):
        if self.corr_id == props.correlation_id:
            self.response = body
 
    def call(self, n):
        self.response = None
        self.corr_id = str(uuid.uuid4())
        self.channel.basic_publish(exchange='',
                                   routing_key='rpc_queue',
                                   properties=pika.BasicProperties(
                                         reply_to = self.callback_queue,
                                         correlation_id = self.corr_id,
                                         ),
                                   body=str(n))
        while self.response is None:
            self.connection.process_data_events()
        return int(self.response)
 
fibonacci_rpc = FibonacciRpcClient()
 
print(" [x] Requesting fib(30)")
response = fibonacci_rpc.call(30)
print(" [.] Got %r" % response)

  

Memcached & Redis使用 

memcached 

http://www.cnblogs.com/wupeiqi/articles/5132791.html  

 

redis 使用

http://www.cnblogs.com/alex3714/articles/6217453.html  

Twsited異步網絡框架

Twisted是一個事件驅動的網絡框架,其中包含了諸多功能,例如:網絡協議、線程、數據庫管理、網絡操做、電子郵件等。 

事件驅動

簡而言之,事件驅動分爲二個部分:第一,註冊事件;第二,觸發事件。

自定義事件驅動框架,命名爲:「弒君者」:

#!/usr/bin/env python
# -*- coding:utf-8 -*-
 
# event_drive.py
 
event_list = []
 
 
def run():
    for event in event_list:
        obj = event()
        obj.execute()
 
 
class BaseHandler(object):
    """
    用戶必須繼承該類,從而規範全部類的方法(相似於接口的功能)
    """
    def execute(self):
        raise Exception('you must overwrite execute')
 
最牛逼的事件驅動框架

程序員使用「弒君者框架」:

#!/usr/bin/env python
# -*- coding:utf-8 -*-
 
from source import event_drive
 
 
class MyHandler(event_drive.BaseHandler):
 
    def execute(self):
        print 'event-drive execute MyHandler'
 
 
event_drive.event_list.append(MyHandler)
event_drive.run()

Protocols

Protocols描述瞭如何以異步的方式處理網絡中的事件。HTTP、DNS以及IMAP是應用層協議中的例子。Protocols實現了IProtocol接口,它包含以下的方法:

makeConnection transport對象和服務器之間創建一條鏈接 connectionMade 鏈接創建起來後調用 dataReceived 接收數據時調用 connectionLost 關閉鏈接時調用

Transports

Transports表明網絡中兩個通訊結點之間的鏈接。Transports負責描述鏈接的細節,好比鏈接是面向流式的仍是面向數據報的,流控以及可靠性。TCP、UDP和Unix套接字可做爲transports的例子。它們被設計爲「知足最小功能單元,同時具備最大程度的可複用性」,並且從協議實現中分離出來,這讓許多協議能夠採用相同類型的傳輸。Transports實現了ITransports接口,它包含以下的方法:

write 以非阻塞的方式按順序依次將數據寫到物理鏈接上 writeSequence 將一個字符串列表寫到物理鏈接上 loseConnection 將全部掛起的數據寫入,而後關閉鏈接 getPeer 取得鏈接中對端的地址信息 getHost 取得鏈接中本端的地址信息

將transports從協議中分離出來也使得對這兩個層次的測試變得更加簡單。能夠經過簡單地寫入一個字符串來模擬傳輸,用這種方式來檢查。

 

EchoServer

from twisted.internet import protocol
from twisted.internet import reactor
 
class Echo(protocol.Protocol):
    def dataReceived(self, data):
        self.transport.write(data)
 
def main():
    factory = protocol.ServerFactory()
    factory.protocol = Echo
 
    reactor.listenTCP(1234,factory)
    reactor.run()
 
if __name__ == '__main__':
    main()
  

EchoClient

from twisted.internet import reactor, protocol
 
 
# a client protocol
 
class EchoClient(protocol.Protocol):
    """Once connected, send a message, then print the result."""
 
    def connectionMade(self):
        self.transport.write("hello alex!")
 
    def dataReceived(self, data):
        "As soon as any data is received, write it back."
        print "Server said:", data
        self.transport.loseConnection()
 
    def connectionLost(self, reason):
        print "connection lost"
 
class EchoFactory(protocol.ClientFactory):
    protocol = EchoClient
 
    def clientConnectionFailed(self, connector, reason):
        print "Connection failed - goodbye!"
        reactor.stop()
 
    def clientConnectionLost(self, connector, reason):
        print "Connection lost - goodbye!"
        reactor.stop()
 
 
# this connects the protocol to a server running on port 8000
def main():
    f = EchoFactory()
    reactor.connectTCP("localhost", 1234, f)
    reactor.run()
 
# this only runs if the module was *not* imported
if __name__ == '__main__':
    main()

  

運行服務器端腳本將啓動一個TCP服務器,監聽端口1234上的鏈接。服務器採用的是Echo協議,數據經TCP transport對象寫出。運行客戶端腳本將對服務器發起一個TCP鏈接,回顯服務器端的迴應而後終止鏈接並中止reactor事件循環。這裏的Factory用來對鏈接的雙方生成protocol對象實例。兩端的通訊是異步的,connectTCP負責註冊回調函數到reactor事件循環中,當socket上有數據可讀時通知回調處理。

一個傳送文件的例子 

server side 

 

#_*_coding:utf-8_*_
# This is the Twisted Fast Poetry Server, version 1.0
 
import optparse, os
 
from twisted.internet.protocol import ServerFactory, Protocol
 
 
def parse_args():
    usage = """usage: %prog [options] poetry-file
 
This is the Fast Poetry Server, Twisted edition.
Run it like this:
 
  python fastpoetry.py <path-to-poetry-file>
 
If you are in the base directory of the twisted-intro package,
you could run it like this:
 
  python twisted-server-1/fastpoetry.py poetry/ecstasy.txt
 
to serve up John Donne's Ecstasy, which I know you want to do.
"""
 
    parser = optparse.OptionParser(usage)
 
    help = "The port to listen on. Default to a random available port."
    parser.add_option('--port', type='int', help=help)
 
    help = "The interface to listen on. Default is localhost."
    parser.add_option('--iface', help=help, default='localhost')
 
    options, args = parser.parse_args()
    print("--arg:",options,args)
 
    if len(args) != 1:
        parser.error('Provide exactly one poetry file.')
 
    poetry_file = args[0]
 
    if not os.path.exists(args[0]):
        parser.error('No such file: %s' % poetry_file)
 
    return options, poetry_file
 
 
class PoetryProtocol(Protocol):
 
    def connectionMade(self):
        self.transport.write(self.factory.poem)
        self.transport.loseConnection()
 
 
class PoetryFactory(ServerFactory):
 
    protocol = PoetryProtocol
 
    def __init__(self, poem):
        self.poem = poem
 
 
def main():
    options, poetry_file = parse_args()
 
    poem = open(poetry_file).read()
 
    factory = PoetryFactory(poem)
 
    from twisted.internet import reactor
 
    port = reactor.listenTCP(options.port or 9000, factory,
                             interface=options.iface)
 
    print 'Serving %s on %s.' % (poetry_file, port.getHost())
 
    reactor.run()
 
 
if __name__ == '__main__':
    main()

client side   

# This is the Twisted Get Poetry Now! client, version 3.0.
 
# NOTE: This should not be used as the basis for production code.
 
import optparse
 
from twisted.internet.protocol import Protocol, ClientFactory
 
 
def parse_args():
    usage = """usage: %prog [options] [hostname]:port ...
 
This is the Get Poetry Now! client, Twisted version 3.0
Run it like this:
 
  python get-poetry-1.py port1 port2 port3 ...
"""
 
    parser = optparse.OptionParser(usage)
 
    _, addresses = parser.parse_args()
 
    if not addresses:
        print parser.format_help()
        parser.exit()
 
    def parse_address(addr):
        if ':' not in addr:
            host = '127.0.0.1'
            port = addr
        else:
            host, port = addr.split(':', 1)
 
        if not port.isdigit():
            parser.error('Ports must be integers.')
 
        return host, int(port)
 
    return map(parse_address, addresses)
 
 
class PoetryProtocol(Protocol):
 
    poem = ''
 
    def dataReceived(self, data):
        self.poem += data
 
    def connectionLost(self, reason):
        self.poemReceived(self.poem)
 
    def poemReceived(self, poem):
        self.factory.poem_finished(poem)
 
 
class PoetryClientFactory(ClientFactory):
 
    protocol = PoetryProtocol
 
    def __init__(self, callback):
        self.callback = callback
 
    def poem_finished(self, poem):
        self.callback(poem)
 
 
def get_poetry(host, port, callback):
    """
    Download a poem from the given host and port and invoke
 
      callback(poem)
 
    when the poem is complete.
    """
    from twisted.internet import reactor
    factory = PoetryClientFactory(callback)
    reactor.connectTCP(host, port, factory)
 
 
def poetry_main():
    addresses = parse_args()
 
    from twisted.internet import reactor
 
    poems = []
 
    def got_poem(poem):
        poems.append(poem)
        if len(poems) == len(addresses):
            reactor.stop()
 
    for address in addresses:
        host, port = address
        get_poetry(host, port, got_poem)
 
    reactor.run()
 
    for poem in poems:
        print poem
 
 
if __name__ == '__main__':
    poetry_main()

  

Twisted深刻

http://krondo.com/an-introduction-to-asynchronous-programming-and-twisted/ 

http://blog.csdn.net/hanhuili/article/details/9389433 

  

  

SqlAlchemy ORM  

SQLAlchemy是Python編程語言下的一款ORM框架,該框架創建在數據庫API之上,使用關係對象映射進行數據庫操做,簡言之即是:將對象轉換成SQL,而後使用數據API執行SQL並獲取執行結果

Dialect用於和數據API進行交流,根據配置文件的不一樣調用不一樣的數據庫API,從而實現對數據庫的操做,如:

MySQL-Python
    mysql+mysqldb://<user>:<password>@<host>[:<port>]/<dbname>
  
pymysql
    mysql+pymysql://<username>:<password>@<host>/<dbname>[?<options>]
  
MySQL-Connector
    mysql+mysqlconnector://<user>:<password>@<host>[:<port>]/<dbname>
  
cx_Oracle
    oracle+cx_oracle://user:pass@host:port/dbname[?key=value&key=value...]
  
更多詳見:http://docs.sqlalchemy.org/en/latest/dialects/index.html

步驟一:

使用 Engine/ConnectionPooling/Dialect 進行數據庫操做,Engine使用ConnectionPooling鏈接數據庫,而後再經過Dialect執行SQL語句。

#!/usr/bin/env python
# -*- coding:utf-8 -*-
  
from sqlalchemy import create_engine
  
  
engine = create_engine("mysql+mysqldb://root:123@127.0.0.1:3306/s11", max_overflow=5)
  
engine.execute(
    "INSERT INTO ts_test (a, b) VALUES ('2', 'v1')"
)
  
engine.execute(
     "INSERT INTO ts_test (a, b) VALUES (%s, %s)",
    ((555, "v1"),(666, "v1"),)
)
engine.execute(
    "INSERT INTO ts_test (a, b) VALUES (%(id)s, %(name)s)",
    id=999, name="v1"
)
  
result = engine.execute('select * from ts_test')
result.fetchall()

步驟二:

使用 Schema Type/SQL Expression Language/Engine/ConnectionPooling/Dialect 進行數據庫操做。Engine使用Schema Type建立一個特定的結構對象,以後經過SQL Expression Language將該對象轉換成SQL語句,而後經過 ConnectionPooling 鏈接數據庫,再而後經過 Dialect 執行SQL,並獲取結果。

#!/usr/bin/env python
# -*- coding:utf-8 -*-
 
from sqlalchemy import create_engine, Table, Column, Integer, String, MetaData, ForeignKey
 
metadata = MetaData()
 
user = Table('user', metadata,
    Column('id', Integer, primary_key=True),
    Column('name', String(20)),
)
 
color = Table('color', metadata,
    Column('id', Integer, primary_key=True),
    Column('name', String(20)),
)
engine = create_engine("mysql+mysqldb://root@localhost:3306/test", max_overflow=5)
 
metadata.create_all(engine)

增刪改查

#!/usr/bin/env python
# -*- coding:utf-8 -*-
 
from sqlalchemy import create_engine, Table, Column, Integer, String, MetaData, ForeignKey
 
metadata = MetaData()
 
user = Table('user', metadata,
    Column('id', Integer, primary_key=True),
    Column('name', String(20)),
)
 
color = Table('color', metadata,
    Column('id', Integer, primary_key=True),
    Column('name', String(20)),
)
engine = create_engine("mysql+mysqldb://root:123@127.0.0.1:3306/s11", max_overflow=5)
 
conn = engine.connect()
 
# 建立SQL語句,INSERT INTO "user" (id, name) VALUES (:id, :name)
conn.execute(user.insert(),{'id':7,'name':'seven'})
conn.close()
 
# sql = user.insert().values(id=123, name='wu')
# conn.execute(sql)
# conn.close()
 
# sql = user.delete().where(user.c.id > 1)
 
# sql = user.update().values(fullname=user.c.name)
# sql = user.update().where(user.c.name == 'jack').values(name='ed')
 
# sql = select([user, ])
# sql = select([user.c.id, ])
# sql = select([user.c.name, color.c.name]).where(user.c.id==color.c.id)
# sql = select([user.c.name]).order_by(user.c.name)
# sql = select([user]).group_by(user.c.name)
 
# result = conn.execute(sql)
# print result.fetchall()
# conn.close()

  

一個簡單的完整例子

from sqlalchemy import create_engine
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Column, Integer, String
from  sqlalchemy.orm import sessionmaker
 
Base = declarative_base() #生成一個SqlORM 基類
 
 
engine = create_engine("mysql+mysqldb://root@localhost:3306/test",echo=False)
 
 
class Host(Base):
    __tablename__ = 'hosts'
    id = Column(Integer,primary_key=True,autoincrement=True)
    hostname = Column(String(64),unique=True,nullable=False)
    ip_addr = Column(String(128),unique=True,nullable=False)
    port = Column(Integer,default=22)
 
Base.metadata.create_all(engine) #建立全部表結構
 
if __name__ == '__main__':
    SessionCls = sessionmaker(bind=engine) #建立與數據庫的會話session class ,注意,這裏返回給session的是個class,不是實例
    session = SessionCls()
    #h1 = Host(hostname='localhost',ip_addr='127.0.0.1')
    #h2 = Host(hostname='ubuntu',ip_addr='192.168.2.243',port=20000)
    #h3 = Host(hostname='ubuntu2',ip_addr='192.168.2.244',port=20000)
    #session.add(h3)
    #session.add_all( [h1,h2])
    #h2.hostname = 'ubuntu_test' #只要沒提交,此時修改也沒問題
    #session.rollback()
    #session.commit() #提交
    res = session.query(Host).filter(Host.hostname.in_(['ubuntu2','localhost'])).all()
    print(res)

更多內容詳見:

    http://www.jianshu.com/p/e6bba189fcbd

    http://docs.sqlalchemy.org/en/latest/core/expression_api.html

注:SQLAlchemy沒法修改表結構,若是須要可使用SQLAlchemy開發者開源的另一個軟件Alembic來完成。

步驟三:

使用 ORM/Schema Type/SQL Expression Language/Engine/ConnectionPooling/Dialect 全部組件對數據進行操做。根據類建立對象,對象轉換成SQL,執行SQL。

#!/usr/bin/env python
# -*- coding:utf-8 -*-
  
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Column, Integer, String
from sqlalchemy.orm import sessionmaker
from sqlalchemy import create_engine
  
engine = create_engine("mysql+mysqldb://root:123@127.0.0.1:3306/s11", max_overflow=5)
  
Base = declarative_base()
  
  
class User(Base):
    __tablename__ = 'users'
    id = Column(Integer, primary_key=True)
    name = Column(String(50))
  
# 尋找Base的全部子類,按照子類的結構在數據庫中生成對應的數據表信息
# Base.metadata.create_all(engine)
  
Session = sessionmaker(bind=engine)
session = Session()
  
  
# ########## 增 ##########
# u = User(id=2, name='sb')
# session.add(u)
# session.add_all([
#     User(id=3, name='sb'),
#     User(id=4, name='sb')
# ])
# session.commit()
  
# ########## 刪除 ##########
# session.query(User).filter(User.id > 2).delete()
# session.commit()
  
# ########## 修改 ##########
# session.query(User).filter(User.id > 2).update({'cluster_id' : 0})
# session.commit()
# ########## 查 ##########
# ret = session.query(User).filter_by(name='sb').first()
  
# ret = session.query(User).filter_by(name='sb').all()
# print ret
  
# ret = session.query(User).filter(User.name.in_(['sb','bb'])).all()
# print ret
  
# ret = session.query(User.name.label('name_label')).all()
# print ret,type(ret)
  
# ret = session.query(User).order_by(User.id).all()
# print ret
  
# ret = session.query(User).order_by(User.id)[1:3]
# print ret
# session.commit()
View Code

 

  

外鍵關聯

A one to many relationship places a foreign key on the child table referencing the parent.relationship() is then specified on the parent, as referencing a collection of items represented by the child

from sqlalchemy import Table, Column, Integer, ForeignKey
from sqlalchemy.orm import relationship
from sqlalchemy.ext.declarative import declarative_base

Base = declarative_base()
<br>class Parent(Base):
    __tablename__ = 'parent'
    id = Column(Integer, primary_key=True)
    children = relationship("Child")
 
class Child(Base):
    __tablename__ = 'child'
    id = Column(Integer, primary_key=True)
    parent_id = Column(Integer, ForeignKey('parent.id'))

  

To establish a bidirectional relationship in one-to-many, where the 「reverse」 side is a many to one, specify an additional relationship() and connect the two using therelationship.back_populates parameter:

class Parent(Base):
    __tablename__ = 'parent'
    id = Column(Integer, primary_key=True)
    children = relationship("Child", back_populates="parent")
 
class Child(Base):
    __tablename__ = 'child'
    id = Column(Integer, primary_key=True)
    parent_id = Column(Integer, ForeignKey('parent.id'))
    parent = relationship("Parent", back_populates="children")

Child will get a parent attribute with many-to-one semantics.

Alternatively, the backref option may be used on a single relationship() instead of usingback_populates:

class Parent(Base):
    __tablename__ = 'parent'
    id = Column(Integer, primary_key=True)
    children = relationship("Child", backref="parent")

 

  

附,原生sql join查詢

幾個Join的區別 http://stackoverflow.com/questions/38549/difference-between-inner-and-outer-joins 

  • INNER JOIN: Returns all rows when there is at least one match in BOTH tables
  • LEFT JOIN: Return all rows from the left table, and the matched rows from the right table
  • RIGHT JOIN: Return all rows from the right table, and the matched rows from the left table
select host.id,hostname,ip_addr,port,host_group.name from host right join host_group on host.id = host_group.host_id

in SQLAchemy

session.query(Host).join(Host.host_groups).filter(HostGroup.name=='t1').group_by("Host").all()

group by 查詢

select name,count(host.id) as NumberOfHosts from host right join host_group on host.id= host_group.host_id group by name;

in SQLAchemy

from sqlalchemy import func
session.query(HostGroup, func.count(HostGroup.name )).group_by(HostGroup.name).all()
 
#another example
session.query(func.count(User.name), User.name).group_by(User.name).all() SELECT count(users.name) AS count_1, users.name AS users_name
FROM users GROUP BY users.name

  

  

  

更多ORM內容猛點這裏  

  

本節做業一

題目:IO多路複用版FTP

需求:

  1. 實現文件上傳及下載功能
  2. 支持多鏈接併發傳文件
  3. 使用select or selectors

 

本節做業二

題目:rpc命令端

需求:

  1. 能夠異步的執行多個命令
  2. 對多臺機器

>>:run "df -h" --hosts 192.168.3.55 10.4.3.4 task id: 45334>>: check_task 45334    

相關文章
相關標籤/搜索