大數據研究經常使用軟件工具與應用場景

現在,大數據日益成爲研究行業的重要研究目標。面對其高數據量、多維度與異構化的特色,以及分析方法思路的擴展,傳通通計工具已經難以應對。java

工欲善其事,必先利其器。衆多新的軟件分析工具做爲深刻大數據洞察研究的重要助力, 也成爲數據科學家所必須掌握的知識技能。算法

然而,現實狀況的複雜性決定了並不存在解決一切問題的終極工具。實際研究過程當中,須要根據實際狀況靈活選擇最合適的工具(甚至多種工具組合使用),才能更好的完成研究探索。數據庫

爲此,本文針對研究人員(非技術人員)的實際狀況,介紹當前大數據研究涉及的一些主要工具軟件(由於相關軟件衆多,只介紹經常使用的),並進一步闡述其應用特色和適合的場景,以便於研究人員能有的放矢的學習和使用。編程

【基礎篇】網絡

一、傳統分析/商業統計框架

Excel、SPSS、SAS 這三者對於研究人員而言並不陌生。機器學習

  • Excel做爲電子表格軟件,適合簡單統計(分組/求和等)需求,因爲其方便好用,功能也能知足不少場景須要,因此實際成爲研究人員最經常使用的軟件工具。其缺點在於功能單一,且可處理數據規模小(這一點讓不少研究人員尤其頭疼)。這兩年Excel在大數據方面(如地理可視化和網絡關係分析)上也做出了一些加強,但應用能力有限。

SPSS(SPSS Statistics)和SAS做爲商業統計軟件,提供研究經常使用的經典統計分析(如迴歸、方差、因子、多變量分析等)處理。編程語言

  • SPSS輕量、易於使用,但功能相對較少,適合常規基本統計分析
  • SAS功能豐富而強大(包括繪圖能力),且支持編程擴展其分析能力,適合複雜與高要求的統計性分析。

上述三個軟件在面對大數據環境出現了各類不適,具體再也不贅述。但這並不表明其沒有使用價值。若是使用傳統研究方法論分析大數據時,海量原始數據資源通過前期處理(如降維和統計彙總等)獲得的中間研究結果,就很適合使用它們進行進一步研究。分佈式

2數據挖掘函數

數據挖掘做爲大數據應用的重要領域,在傳通通計分析基礎上,更強調提供機器學習的方法,關注高維空間下複雜數據關聯關係和推演能力。表明是SPSS Modeler(注意不是SPSS Statistics,其前身爲Clementine)

SPSS Modeler的統計功能相對有限, 主要是提供面向商業挖掘的機器學習算法(決策樹、神經元網絡、分類、聚類和預測等)的實現。同時,其數據預處理和結果輔助分析方面也至關方便,這一點尤爲適合商業環境下的快速挖掘。不過就處理能力而言,實際感受難以應對億級以上的數據規模。

另外一個商業軟件 Matlab也能提供大量數據挖掘的算法,但其特性更關注科學與工程計算領域。而著名的開源數據挖掘軟件Weka,功能較少,且數據預處理和結果分析也比較麻煩,更適合學術界或有數據預處理能力的使用者。

【中級篇】

一、通用大數據可視化分析

近兩年來出現了許多面向大數據、具有可視化能力的分析工具,在商業研究領域,TableAU無疑是卓越表明。

TableAU的優點主要在於支持多種大數據源/格式,衆多的可視化圖表類型,加上拖拽式的使用方式,上手快,很是適合研究員使用,可以涵蓋大部分分析研究的場景。不過要注意,其並不能提供經典統計和機器學習算法支持, 所以其能夠替代Excel, 但不能代替統計和數據挖掘軟件。另外,就實際處理速度而言,感受面對較大數據(實例超過3000萬記錄)時,並無官方介紹的那麼迅速。

2 、關係分析

關係分析是大數據環境下的一個新的分析熱點(好比信息傳播圖、社交關係網等),其本質計算的是點之間的關聯關係。相關工具中,適合數據研究人員的是一些可視化的輕量桌面型工具,最經常使用的是Gephi。

Gephi是免費軟件,擅長解決圖網絡分析的不少需求,其插件衆多,功能強且易用。咱們常常看到的各類社交關係/傳播譜圖, 不少都是基於其力導向圖(Force directed graph)功能生成。但因爲其由java編寫,限制了處理性能(感受處理超過10萬節點/邊時常陷入假死),如分析百萬級節點(如微博熱點傳播路徑)關係時,需先作平滑和剪枝處理。 而要處理更大規模(如億級以上)的關係網絡(如社交網絡關係)數據,則須要專門的圖關係數據庫(如GraphLab/GraphX)來支撐了,其技術要求較高,此處再也不介紹。

三、時空數據分析

當前不少軟件(包括TableAU)都提供了時空數據的可視化分析功能。但就使用感覺來看,其大都只適合較小規模(萬級)的可視化展現分析,不多支持不一樣粒度的快速聚合探索。

若是要分析千萬級以上的時空數據,好比新浪微博上億用戶發文的時間與地理分佈(從省到街道多級粒度的探索)時,推薦使用 NanoCubes(http://www.nanocubes.net/)。該開源軟件可在平常的辦公電腦上提供對億級時空數據的快速展現和多級實時鑽取探索分析。下圖是對芝加哥犯罪時間地點的分析,網站有更多的實時分析的演示例子

四、文本/非結構化分析

基於天然語言處理(NLP)的文本分析,在非結構化內容(如互聯網/社交媒體/電商評論)大數據的分析方面(甚至調研開放題結果分析)有重要用途。其應用處理涉及分詞、特徵抽取、情感分析、多主題模型等衆多內容。

因爲實現難度與領域差別,當前市面上只有一些開源函數包或者雲API(如BosonNLP)提供一些基礎處理功能,還沒有看到適合商業研究分析中文文本的集成化工具軟件(若是有誰知道煩請通知我)。在這種狀況下,各商業公司(如HCR)主要依靠內部技術實力自主研發適合業務所需的分析功能。

【高級篇】

前面介紹的各類大數據分析工具,可應對的數據都在億級如下,也以結構化數據爲主。當實際面臨如下要求: 億級以上/半實時性處理/非標準化複雜需求,一般就須要藉助編程(甚至藉助於Hadoop/Spark等分佈式計算框架)來完成相關的分析。 若是能掌握相關的編程語言能力,那研究員的分析能力將如虎添翼。

當前適合大數據處理的編程語言,包括:

前面的內容介紹了面向大數據研究的不一樣工具軟件/語言的特色和適用場景。 這些工具可以極大加強研究員在大數據環境下的分析能力,但更重要的是研究員要發揮自身對業務的深刻理解,從數據結果中洞察發現有深度的結果,這纔是最有價值的。

相關文章
相關標籤/搜索