最近在使用一個內部的RPC框架時,發現若是使用Object類型,實際類型爲BigDecimal的時候,做爲傳輸對象的時候,會出現丟失精度的問題;好比在序列化前爲金額1.00,反序列化以後爲1.0,自己值可能沒有影響,可是在有些強依賴金額的地方,會出現問題;git
查看源碼發現RPC框架默認使用的序列化框架爲Jackson,那簡單,看一下本地是否能夠重現問題;github
public class Bean1 { private String p1; private BigDecimal p2; ...省略get/set... } public class Bean2 { private String p1; private Object p2; ...省略get/set... }
爲了更好的看出問題,分別準備了2個bean;json
public class JKTest { public static void main(String[] args) throws IOException { ObjectMapper mapper = new ObjectMapper(); Bean1 bean1 = new Bean1("haha1", new BigDecimal("1.00")); Bean2 bean2 = new Bean2("haha2", new BigDecimal("2.00")); String bs1 = mapper.writeValueAsString(bean1); String bs2 = mapper.writeValueAsString(bean2); System.out.println(bs1); System.out.println(bs2); Bean1 b1 = mapper.readValue(bs1, Bean1.class); System.out.println(b1.toString()); Bean2 b22 = mapper.readValue(bs2, Bean2.class); System.out.println(b22.toString()); } }
分別對Bean1和Bean2進行序列化和反序列化操做,而後查看結果;app
{"p1":"haha1","p2":1.00} {"p1":"haha2","p2":2.00} Bean1 [p1=haha1, p2=1.00] Bean2 [p1=haha2, p2=2.0]
結果能夠發現兩個問題:
1.在序列化的時候2個bean都沒有問題;
2.重現了問題,Bean2在反序列化時,p2出現了精度丟失的問題;框架
經過一步一步查看Jackson源碼,最終定位到UntypedObjectDeserializer的Vanilla內部類中,反序列方法以下:源碼分析
public Object deserialize(JsonParser p, DeserializationContext ctxt) throws IOException { switch (p.getCurrentTokenId()) { case JsonTokenId.ID_START_OBJECT: { JsonToken t = p.nextToken(); if (t == JsonToken.END_OBJECT) { return new LinkedHashMap<String,Object>(2); } } case JsonTokenId.ID_FIELD_NAME: return mapObject(p, ctxt); case JsonTokenId.ID_START_ARRAY: { JsonToken t = p.nextToken(); if (t == JsonToken.END_ARRAY) { // and empty one too if (ctxt.isEnabled(DeserializationFeature.USE_JAVA_ARRAY_FOR_JSON_ARRAY)) { return NO_OBJECTS; } return new ArrayList<Object>(2); } } if (ctxt.isEnabled(DeserializationFeature.USE_JAVA_ARRAY_FOR_JSON_ARRAY)) { return mapArrayToArray(p, ctxt); } return mapArray(p, ctxt); case JsonTokenId.ID_EMBEDDED_OBJECT: return p.getEmbeddedObject(); case JsonTokenId.ID_STRING: return p.getText(); case JsonTokenId.ID_NUMBER_INT: if (ctxt.hasSomeOfFeatures(F_MASK_INT_COERCIONS)) { return _coerceIntegral(p, ctxt); } return p.getNumberValue(); // should be optimal, whatever it is case JsonTokenId.ID_NUMBER_FLOAT: if (ctxt.isEnabled(DeserializationFeature.USE_BIG_DECIMAL_FOR_FLOATS)) { return p.getDecimalValue(); } return p.getNumberValue(); case JsonTokenId.ID_TRUE: return Boolean.TRUE; case JsonTokenId.ID_FALSE: return Boolean.FALSE; case JsonTokenId.ID_END_OBJECT: // 28-Oct-2015, tatu: [databind#989] We may also be given END_OBJECT (similar to FIELD_NAME), // if caller has advanced to the first token of Object, but for empty Object return new LinkedHashMap<String,Object>(2); case JsonTokenId.ID_NULL: // 08-Nov-2016, tatu: yes, occurs return null; //case JsonTokenId.ID_END_ARRAY: // invalid default: } return ctxt.handleUnexpectedToken(Object.class, p); }
在Bean2中的p2是一個Object類型,因此Jackson中給定的反序列化類爲UntypedObjectDeserializer,這個比較容易理解;而後根據具體的數據類型,調用不用的讀取方法;由於json這種序列化方式,除了數據,自己並無存放具體的數據類型,全部這裏Jackson認定2.00爲一個ID_NUMBER_FLOAT類型,在這個case下面有2個選擇,默認是直接調用getNumberValue()方法,這種狀況會丟失精度,返回結果爲2.0;或者開啓使用USE_BIG_DECIMAL_FOR_FLOATS特性,問題解決也很簡單,使用此特性便可;測試
ObjectMapper mapper = new ObjectMapper(); mapper.enable(DeserializationFeature.USE_BIG_DECIMAL_FOR_FLOATS);
再次測試,能夠發現結果以下:ui
{"p1":"haha1","p2":1.00} {"p1":"haha2","p2":2.00} Bean1 [p1=haha1, p2=1.00] Bean2 [p1=haha2, p2=2.00]
Jackson自己提供了對序列化和反序列擴展的功能,對應特殊的Bean能夠本身定義反序列類,好比針對Bean2,能夠實現Bean2Deserializer,而後在ObjectMapper進行註冊this
ObjectMapper mapper = new ObjectMapper(); SimpleModule desModule = new SimpleModule("testModule"); desModule.addDeserializer(Bean2.class, new Bean2Deserializer(Bean2.class)); mapper.registerModule(desModule);
Json自己並無存放數據類型,只有數據自己,那應該類Json的序列化方式應該都存在此問題;spa
準備測試代碼以下:
public class FJTest { public static void main(String[] args) { Bean1 bean1 = new Bean1("haha1", new BigDecimal("1.00")); Bean2 bean2 = new Bean2("haha2", new BigDecimal("2.00")); String jsonString1 = JSON.toJSONString(bean1); String jsonString2 = JSON.toJSONString(bean2); System.out.println(jsonString1); System.out.println(jsonString2); Bean1 bean11 = JSON.parseObject(jsonString1, Bean1.class); Bean2 bean22 = JSON.parseObject(jsonString2, Bean2.class); System.out.println(bean11.toString()); System.out.println(bean22.toString()); } }
結果以下:
{"p1":"haha1","p2":1.00} {"p1":"haha2","p2":2.00} Bean1 [p1=haha1, p2=1.00] Bean2 [p1=haha2, p2=2.00]
能夠發現FastJson並不存在此問題,查看源碼,定位到DefaultJSONParser的parse方法,部分代碼以下:
public Object parse(Object fieldName) { final JSONLexer lexer = this.lexer; switch (lexer.token()) { case SET: lexer.nextToken(); HashSet<Object> set = new HashSet<Object>(); parseArray(set, fieldName); return set; case TREE_SET: lexer.nextToken(); TreeSet<Object> treeSet = new TreeSet<Object>(); parseArray(treeSet, fieldName); return treeSet; case LBRACKET: JSONArray array = new JSONArray(); parseArray(array, fieldName); if (lexer.isEnabled(Feature.UseObjectArray)) { return array.toArray(); } return array; case LBRACE: JSONObject object = new JSONObject(lexer.isEnabled(Feature.OrderedField)); return parseObject(object, fieldName); case LITERAL_INT: Number intValue = lexer.integerValue(); lexer.nextToken(); return intValue; case LITERAL_FLOAT: Object value = lexer.decimalValue(lexer.isEnabled(Feature.UseBigDecimal)); lexer.nextToken(); return value; case LITERAL_STRING: String stringLiteral = lexer.stringVal(); lexer.nextToken(JSONToken.COMMA); if (lexer.isEnabled(Feature.AllowISO8601DateFormat)) { JSONScanner iso8601Lexer = new JSONScanner(stringLiteral); try { if (iso8601Lexer.scanISO8601DateIfMatch()) { return iso8601Lexer.getCalendar().getTime(); } } finally { iso8601Lexer.close(); } } return stringLiteral; case NULL: lexer.nextToken(); return null; case UNDEFINED: lexer.nextToken(); return null; case TRUE: lexer.nextToken(); return Boolean.TRUE; case FALSE: lexer.nextToken(); return Boolean.FALSE; ...省略... }
相似jackson的方式,根據不一樣的類型作不一樣的數據處理,一樣2.00也被認爲是float類型,一樣須要檢測是否開啓Feature.UseBigDecimal特性,只不過FastJson默認開啓了此功能;
下面再來看一個非Json類序列化方式,看protostuff是若是處理此種問題的;
準備測試代碼以下:
@SuppressWarnings("unchecked") public class PBTest { public static void main(String[] args) { Bean1 bean1 = new Bean1("haha1", new BigDecimal("1.00")); Bean2 bean2 = new Bean2("haha2", new BigDecimal("2.00")); LinkedBuffer buffer1 = LinkedBuffer.allocate(LinkedBuffer.DEFAULT_BUFFER_SIZE); Schema schema1 = RuntimeSchema.createFrom(bean1.getClass()); byte[] bytes1 = ProtostuffIOUtil.toByteArray(bean1, schema1, buffer1); Bean1 bean11 = new Bean1(); ProtostuffIOUtil.mergeFrom(bytes1, bean11, schema1); System.out.println(bean11.toString()); LinkedBuffer buffer2 = LinkedBuffer.allocate(LinkedBuffer.DEFAULT_BUFFER_SIZE); Schema schema2 = RuntimeSchema.createFrom(bean2.getClass()); byte[] bytes2 = ProtostuffIOUtil.toByteArray(bean2, schema2, buffer2); Bean2 bean22 = new Bean2(); ProtostuffIOUtil.mergeFrom(bytes2, bean22, schema2); System.out.println(bean22.toString()); } }
結果以下:
Bean1 [p1=haha1, p2=1.00] Bean2 [p1=haha2, p2=2.00]
能夠發現Protostuff也不存在此問題,緣由是由於Protostuff在序列化的時候就將類型等信息存放在二進制中,不一樣的類型給定了不一樣的標識,RuntimeFieldFactory列出了全部標識:
public abstract class RuntimeFieldFactory<V> implements Delegate<V> { static final int ID_BOOL = 1, ID_BYTE = 2, ID_CHAR = 3, ID_SHORT = 4, ID_INT32 = 5, ID_INT64 = 6, ID_FLOAT = 7, ID_DOUBLE = 8, ID_STRING = 9, ID_BYTES = 10, ID_BYTE_ARRAY = 11, ID_BIGDECIMAL = 12, ID_BIGINTEGER = 13, ID_DATE = 14, ID_ARRAY = 15, // 1-15 is encoded as 1 byte on protobuf and // protostuff format ID_OBJECT = 16, ID_ARRAY_MAPPED = 17, ID_CLASS = 18, ID_CLASS_MAPPED = 19, ID_CLASS_ARRAY = 20, ID_CLASS_ARRAY_MAPPED = 21, ID_ENUM_SET = 22, ID_ENUM_MAP = 23, ID_ENUM = 24, ID_COLLECTION = 25, ID_MAP = 26, ID_POLYMORPHIC_COLLECTION = 28, ID_POLYMORPHIC_MAP = 29, ID_DELEGATE = 30, ID_ARRAY_DELEGATE = 32, ID_ARRAY_SCALAR = 33, ID_ARRAY_ENUM = 34, ID_ARRAY_POJO = 35, ID_THROWABLE = 52, // pojo fields limited to 126 if not explicitly using @Tag // annotations ID_POJO = 127; ...... }
序列化的時候是已以下格式來存儲數據的,以下圖所示:
tag裏面包含了字段的位置標識,好比第一個字段,第二個字段…,以及類型信息,能夠看一下兩個bean序列化以後的二進制信息:
10 5 104 97 104 97 49 18 4 49 46 48 48 10 5 104 97 104 97 50 19 98 4 50 46 48 48 20
104 97 104 97 49和104 97 104 97 50分別是:haha1和haha2;49 46 48 48和50 46 48 48分別是1.00和2.00;
Bean2存儲的數據量明細比Bean1大,由於Bean2中的p2做爲Object存儲,須要存儲Object的起始標識和結束標識,還須要保存具體的類型信息;
更多能夠參考:https://my.oschina.net/OutOfM...
類Json序列化方式自己沒有保存數據的類型,因此在反序列時有些類型不能區分,只能經過設置特性的方式來解決,可是json格式有更好的可讀性;直接序列化爲二進制的方式可讀性差點,可是能夠將不少信息保存進去,更加完善;
https://github.com/ksfzhaohui...
https://gitee.com/OutOfMemory...