【轉】深刻理解Java內存模型(六)——final

與前面介紹的鎖和volatile相比較,對final域的讀和寫更像是普通的變量訪問。對於final域,編譯器和處理器要遵照兩個重排序規則:java

  1. 在構造函數內對一個final域的寫入,與隨後把這個被構造對象的引用賦值給一個引用變量,這兩個操做之間不能重排序。
  2. 初次讀一個包含final域的對象的引用,與隨後初次讀這個final域,這兩個操做之間不能重排序。

下面,咱們經過一些示例性的代碼來分別說明這兩個規則:程序員

public class FinalExample {
    int i;                            //普通變量
    final int j;                      //final變量
    static FinalExample obj;

    public void FinalExample () {     //構造函數
        i = 1;                        //寫普通域
        j = 2;                        //寫final域
    }

    public static void writer () {    //寫線程A執行
        obj = new FinalExample ();
    }

    public static void reader () {       //讀線程B執行
        FinalExample object = obj;       //讀對象引用
        int a = object.i;                //讀普通域
        int b = object.j;                //讀final域
    }
}

這裏假設一個線程A執行writer ()方法,隨後另外一個線程B執行reader ()方法。下面咱們經過這兩個線程的交互來講明這兩個規則。數組

寫final域的重排序規則

寫final域的重排序規則禁止把final域的寫重排序到構造函數以外。這個規則的實現包含下面2個方面:安全

  • JMM禁止編譯器把final域的寫重排序到構造函數以外。
  • 編譯器會在final域的寫以後,構造函數return以前,插入一個StoreStore屏障。這個屏障禁止處理器把final域的寫重排序到構造函數以外。

如今讓咱們分析writer ()方法。writer ()方法只包含一行代碼:finalExample = new FinalExample ()。這行代碼包含兩個步驟:函數

  1. 構造一個FinalExample類型的對象;
  2. 把這個對象的引用賦值給引用變量obj。

假設線程B讀對象引用與讀對象的成員域之間沒有重排序(立刻會說明爲何須要這個假設),下圖是一種可能的執行時序:this

 

在上圖中,寫普通域的操做被編譯器重排序到了構造函數以外,讀線程B錯誤的讀取了普通變量i初始化以前的值。而寫final域的操做,被寫final域的重排序規則「限定」在了構造函數以內,讀線程B正確的讀取了final變量初始化以後的值。spa

寫final域的重排序規則能夠確保:在對象引用爲任意線程可見以前,對象的final域已經被正確初始化過了,而普通域不具備這個保障。以上圖爲例,在讀線程B「看到」對象引用obj時,極可能obj對象尚未構造完成(對普通域i的寫操做被重排序到構造函數外,此時初始值2尚未寫入普通域i)。線程

讀final域的重排序規則

讀final域的重排序規則以下:對象

  • 在一個線程中,初次讀對象引用與初次讀該對象包含的final域,JMM禁止處理器重排序這兩個操做(注意,這個規則僅僅針對處理器)。編譯器會在讀final域操做的前面插入一個LoadLoad屏障。

初次讀對象引用與初次讀該對象包含的final域,這兩個操做之間存在間接依賴關係。因爲編譯器遵照間接依賴關係,所以編譯器不會重排序這兩個操做。大多數處理器也會遵照間接依賴,大多數處理器也不會重排序這兩個操做。但有少數處理器容許對存在間接依賴關係的操做作重排序(好比alpha處理器),這個規則就是專門用來針對這種處理器。排序

reader()方法包含三個操做:

  1. 初次讀引用變量obj;
  2. 初次讀引用變量obj指向對象的普通域j。
  3. 初次讀引用變量obj指向對象的final域i。

如今咱們假設寫線程A沒有發生任何重排序,同時程序在不遵照間接依賴的處理器上執行,下面是一種可能的執行時序:

在上圖中,讀對象的普通域的操做被處理器重排序到讀對象引用以前。讀普通域時,該域尚未被寫線程A寫入,這是一個錯誤的讀取操做。而讀final域的重排序規則會把讀對象final域的操做「限定」在讀對象引用以後,此時該final域已經被A線程初始化過了,這是一個正確的讀取操做。

讀final域的重排序規則能夠確保:在讀一個對象的final域以前,必定會先讀包含這個final域的對象的引用。在這個示例程序中,若是該引用不爲null,那麼引用對象的final域必定已經被A線程初始化過了。

若是final域是引用類型

上面咱們看到的final域是基礎數據類型,下面讓咱們看看若是final域是引用類型,將會有什麼效果?

請看下列示例代碼:

public class FinalReferenceExample {
final int[] intArray;                     //final是引用類型
static FinalReferenceExample obj;

public FinalReferenceExample () {        //構造函數
    intArray = new int[1];              //1
    intArray[0] = 1;                   //2
}

public static void writerOne () {          //寫線程A執行
    obj = new FinalReferenceExample ();  //3
}

public static void writerTwo () {          //寫線程B執行
    obj.intArray[0] = 2;                 //4
}

public static void reader () {              //讀線程C執行
    if (obj != null) {                    //5
        int temp1 = obj.intArray[0];       //6
    }
}
}

這裏final域爲一個引用類型,它引用一個int型的數組對象。對於引用類型,寫final域的重排序規則對編譯器和處理器增長了以下約束:

  1. 在構造函數內對一個final引用的對象的成員域的寫入,與隨後在構造函數外把這個被構造對象的引用賦值給一個引用變量,這兩個操做之間不能重排序。

對上面的示例程序,咱們假設首先線程A執行writerOne()方法,執行完後線程B執行writerTwo()方法,執行完後線程C執行reader ()方法。下面是一種可能的線程執行時序:

在上圖中,1是對final域的寫入,2是對這個final域引用的對象的成員域的寫入,3是把被構造的對象的引用賦值給某個引用變量。這裏除了前面提到的1不能和3重排序外,2和3也不能重排序。

JMM能夠確保讀線程C至少能看到寫線程A在構造函數中對final引用對象的成員域的寫入。即C至少能看到數組下標0的值爲1。而寫線程B對數組元素的寫入,讀線程C可能看的到,也可能看不到。JMM不保證線程B的寫入對讀線程C可見,由於寫線程B和讀線程C之間存在數據競爭,此時的執行結果不可預知。

若是想要確保讀線程C看到寫線程B對數組元素的寫入,寫線程B和讀線程C之間須要使用同步原語(lock或volatile)來確保內存可見性。

爲何final引用不能從構造函數內「逸出」

前面咱們提到過,寫final域的重排序規則能夠確保:在引用變量爲任意線程可見以前,該引用變量指向的對象的final域已經在構造函數中被正確初始化過了。其實要獲得這個效果,還須要一個保證:在構造函數內部,不能讓這個被構造對象的引用爲其餘線程可見,也就是對象引用不能在構造函數中「逸出」。爲了說明問題,讓咱們來看下面示例代碼:

public class FinalReferenceEscapeExample {
final int i;
static FinalReferenceEscapeExample obj;

public FinalReferenceEscapeExample () {
    i = 1;                              //1寫final域
    obj = this;                          //2 this引用在此「逸出」
}

public static void writer() {
    new FinalReferenceEscapeExample ();
}

public static void reader {
    if (obj != null) {                     //3
        int temp = obj.i;                 //4
    }
}
}

假設一個線程A執行writer()方法,另外一個線程B執行reader()方法。這裏的操做2使得對象還未完成構造前就爲線程B可見。即便這裏的操做2是構造函數的最後一步,且即便在程序中操做2排在操做1後面,執行read()方法的線程仍然可能沒法看到final域被初始化後的值,由於這裏的操做1和操做2之間可能被重排序。實際的執行時序可能以下圖所示:

從上圖咱們能夠看出:在構造函數返回前,被構造對象的引用不能爲其餘線程可見,由於此時的final域可能尚未被初始化。在構造函數返回後,任意線程都將保證能看到final域正確初始化以後的值。

final語義在處理器中的實現

如今咱們以x86處理器爲例,說明final語義在處理器中的具體實現。

上面咱們提到,寫final域的重排序規則會要求譯編器在final域的寫以後,構造函數return以前,插入一個StoreStore障屏。讀final域的重排序規則要求編譯器在讀final域的操做前面插入一個LoadLoad屏障。

因爲x86處理器不會對寫-寫操做作重排序,因此在x86處理器中,寫final域須要的StoreStore障屏會被省略掉。一樣,因爲x86處理器不會對存在間接依賴關係的操做作重排序,因此在x86處理器中,讀final域須要的LoadLoad屏障也會被省略掉。也就是說在x86處理器中,final域的讀/寫不會插入任何內存屏障!

JSR-133爲何要加強final的語義

在舊的Java內存模型中 ,最嚴重的一個缺陷就是線程可能看到final域的值會改變。好比,一個線程當前看到一個整形final域的值爲0(還未初始化以前的默認值),過一段時間以後這個線程再去讀這個final域的值時,卻發現值變爲了1(被某個線程初始化以後的值)。最多見的例子就是在舊的Java內存模型中,String的值可能會改變(參考文獻2中有一個具體的例子,感興趣的讀者能夠自行參考,這裏就不贅述了)。

爲了修補這個漏洞,JSR-133專家組加強了final的語義。經過爲final域增長寫和讀重排序規則,能夠爲java程序員提供初始化安全保證:只要對象是正確構造的(被構造對象的引用在構造函數中沒有「逸出」),那麼不須要使用同步(指lock和volatile的使用),就能夠保證任意線程都能看到這個final域在構造函數中被初始化以後的值。

 

轉自:http://www.infoq.com/cn/articles/java-memory-model-6

相關文章
相關標籤/搜索