數據流塊基礎

>>返回《C# 併發編程》html

1. 簡介

TPL 數據流(dataflow)庫的功能很強大,可用來建立網格(mesh)和管道(pipleline), 並經過它們以異步方式發送數據。編程

主要命名空間: System.Threading.Tasks.Dataflow緩存

2. 連接數據流塊

建立網格時,須要把數據流塊互相鏈接起來。併發

public static void LinkBlockRun()
{
    System.Console.WriteLine("Building Block link.");
    TransformBlock<int, int> multiplyBlock = new TransformBlock<int, int>(item =>
    {
        System.Console.WriteLine("first block.");
        Thread.Sleep(500);
        return item * 2;
    });
    var subtractBlock = new TransformBlock<int, int>(item =>
    {
        System.Console.WriteLine("last block.");
        Thread.Sleep(500);
        return item - 2;
    });
    var options = new DataflowLinkOptions
    {
        PropagateCompletion = true
    };
    multiplyBlock.LinkTo(subtractBlock, options);

    System.Console.WriteLine("Builded Block link.");

    var task = Task.Run(async () =>
    {
        System.Console.WriteLine("Posting");

        for (int i = 0; i < 3; i++)
        {
            multiplyBlock.Post(i);
        }

        System.Console.WriteLine("Posted");

        // 第一個塊的完成狀況自動傳遞給第二個塊。 
        // Complete 後,再進行 Post 是無效的
        multiplyBlock.Complete();

        await multiplyBlock.Completion;
        // 連接使用完了
        System.Console.WriteLine("Block link Ended.");
    });

    task.Wait();
}

輸出爲:異步

Building Block link.
Builded Block link.
Posting
Posted
first block.
first block.
last block.
first block.
last block.
last block.
Block link Ended.

3. 傳遞出錯信息

public static void BlockErrorRun()
{
    Task.Run(async () =>
    {
        try
        {
            //單個塊異常類型
            var block = new TransformBlock<int, int>(item =>
              {
                  if (item == 1)
                      throw new InvalidOperationException("Blech.");
                  return item * 2;
              });
            block.Post(1);
            await block.Completion;

        }
        catch (InvalidOperationException ex)
        {
            System.Console.WriteLine(ex.GetType().Name);
        }

        try
        {
            //被鏈接的塊異常類型
            var multiplyBlock = new TransformBlock<int, int>(item =>
             {
                 if (item == 1)
                     throw new InvalidOperationException("Blech.");
                 return item * 2;
             });
            var subtractBlock = new TransformBlock<int, int>(item => item - 2);
            multiplyBlock.LinkTo(subtractBlock, new DataflowLinkOptions { PropagateCompletion = true });
            multiplyBlock.Post(1);
            await subtractBlock.Completion;
        }
        catch (AggregateException ex)
        {
            System.Console.WriteLine(ex.GetType().Name);
        }

    }).Wait();
}

輸出爲:async

InvalidOperationException
AggregateException
  • 對於最簡單的狀況,最好是把錯誤傳遞下去,等到最後再做一次性處理。
  • 對於更複雜的網格,在數據流完成後須要檢查每個數據流塊。

4. 斷開連接

public static void BlockDisposeRun()
{
    var multiplyBlock = new TransformBlock<int, int>(item =>
    {
        System.Console.WriteLine("first block.");
        Thread.Sleep(500);
        return item * 2;
    });
    var subtractBlock = new TransformBlock<int, int>(item =>
    {
        System.Console.WriteLine("last block.");
        Thread.Sleep(500);
        return item - 2;
    });

    IDisposable link = multiplyBlock.LinkTo(subtractBlock);
    multiplyBlock.Post(1);
    multiplyBlock.Post(2);
    // 斷開數據流塊的連接。
    // 前面的代碼中,數據可能已經經過連接傳遞過去,也可能尚未。 
    // 在實際應用中,考慮使用代碼塊,而不是調用 Dispose。 
    link.Dispose();
    Thread.Sleep(1200);
}

輸出爲:ide

first block.
first block.

5. 限制流量

用數據流塊 的 BoundedCapacity 屬性,來限制目標塊的流量(throttling)。 BoundedCapacity 的默認設置是 DataflowBlockOptions.Unboundedui

解決的問題:code

  • 防止數據的數據太多太快,致使第一個目標塊在還來不及處理數據時就得對全部數據進行了緩衝
public static void BlockBoundedCapacityRun()
{
    var sourceBlock = new BufferBlock<int>();
    var options = new DataflowBlockOptions
    {
        BoundedCapacity = 10
        //BoundedCapacity = DataflowBlockOptions.Unbounded
    };
    var targetBlockA = new BufferBlock<int>(options);
    var targetBlockB = new BufferBlock<int>(options);
    sourceBlock.LinkTo(targetBlockA);
    sourceBlock.LinkTo(targetBlockB);

    for (int i = 0; i < 31; i++)
    {
        System.Console.WriteLine($"{DateTime.Now.ToString("mm:ss.fff")} Post:{i % 10}");
        sourceBlock.Post(i % 10);
    }
    //向水管中注入31個水滴
    //因爲分支的限流, targetBlockA 和 targetBlockB 各獲得了10各水滴
    var task = Task.Run(() =>
    {
        int i = 0;

        System.Console.WriteLine("先處理 targetBlockA 的水滴,此處循環接收會將水滴接幹,可是接不到存在 targetBlockB 中的水滴");
        do
        {
            IList<int> res;
            if (targetBlockA.TryReceiveAll(out res))
            {
                i += res.Count;
                System.Console.WriteLine($"{DateTime.Now.ToString("mm:ss.fff")} RevcA:{string.Join(",", res)} {i}");
            }
            else
            {
                break;
            }
            Thread.Sleep(100);
        } while (true);

        i = 0;

        System.Console.WriteLine("處理 targetBlockB 的水滴,只剩下緩衝的水滴");
        do
        {
            IList<int> res;
            if (targetBlockB.TryReceiveAll(out res))
            {
                i += res.Count;
                System.Console.WriteLine($"{DateTime.Now.ToString("mm:ss.fff")} RevcB:{string.Join(",", res)} {i}");
            }
            else
            {
                break;
            }
            Thread.Sleep(100);
        } while (true);
    });

    task.Wait();
}

輸出爲:orm

40:28.026 Post:0
40:28.038 Post:1
40:28.038 Post:2
40:28.038 Post:3
40:28.038 Post:4
40:28.038 Post:5
40:28.038 Post:6
40:28.038 Post:7
40:28.038 Post:8
40:28.038 Post:9
40:28.038 Post:0
40:28.038 Post:1
40:28.038 Post:2
40:28.038 Post:3
40:28.038 Post:4
40:28.038 Post:5
40:28.038 Post:6
40:28.038 Post:7
40:28.038 Post:8
40:28.038 Post:9
40:28.038 Post:0
40:28.038 Post:1
40:28.038 Post:2
40:28.038 Post:3
40:28.038 Post:4
40:28.038 Post:5
40:28.038 Post:6
40:28.038 Post:7
40:28.038 Post:8
40:28.038 Post:9
40:28.038 Post:0
先處理 targetBlockA 的水滴,此處循環接收會將水滴接幹,可是接不到存在 targetBlockB 中的水滴
40:28.043 RevcA:0,1,2,3,4,5,6,7,8,9 10
40:28.149 RevcA:0,1,2,3,4,5,6,7,8,9 20
40:28.249 RevcA:0 21
處理 targetBlockB 的水滴,只剩下緩衝的水滴
40:28.350 RevcB:0,1,2,3,4,5,6,7,8,9 10

限流例子: 在用 I/O 操做的數據填充數據流網格時,能夠設置數據流塊的 BoundedCapacity 屬性。這樣,在網格來不及處理數據時,就不會讀取過多的 I/O 數據,網格也不會緩存全部數據。

6. 數據流塊的並行處理

public static void BlockParalleRun()
{
    var multiplyBlock = new TransformBlock<int, int>(
    item =>
    {
        System.Console.WriteLine($"{DateTime.Now.ToString("mm:ss.fff")} first block.");
        Thread.Sleep(100);
        return item * 2;
    },
    new ExecutionDataflowBlockOptions
    {
        MaxDegreeOfParallelism = DataflowBlockOptions.Unbounded
    }
    );
    var subtractBlock = new TransformBlock<int, int>(item =>
    {
        System.Console.WriteLine($"{DateTime.Now.ToString("mm:ss.fff")} last block.");
        Thread.Sleep(100);
        return item - 2;
    });
    multiplyBlock.LinkTo(subtractBlock, new DataflowLinkOptions { PropagateCompletion = true });

    var task = Task.Run(async () =>
    {
        for (int i = 0; i < 7; i++)
        {
            multiplyBlock.Post(i);
        }

        multiplyBlock.Complete();
        await multiplyBlock.Completion;

        var tk = Task.Run(() =>
        {
            IList<int> recvResList;
            //此處延時爲了TryReceiveAll獲取全部數據,防止 subtractBlock 還有數據未接收
            Thread.Sleep(1500);
            if (subtractBlock.TryReceiveAll(out recvResList))
            {
                System.Console.WriteLine($"{DateTime.Now.ToString("mm:ss.fff")} Revc {string.Join(",", recvResList)}.");
            }
            else
            {
                System.Console.WriteLine($"{DateTime.Now.ToString("mm:ss.fff")} Revc null.");
            }
        });
        await tk;
        // multiplyBlock 已經調用完成,subtractBlock 的完成狀態依賴於 Link 參數 PropagateCompletion
        await subtractBlock.Completion;
    });
    task.Wait();
}

輸出爲:

44:16.023 first block.
44:16.023 first block.
44:16.023 first block.
44:16.023 first block.
44:16.023 first block.
44:16.023 first block.
44:16.023 first block.
44:16.146 last block.
44:16.250 last block.
44:16.351 last block.
44:16.452 last block.
44:16.552 last block.
44:16.652 last block.
44:16.753 last block.
44:17.656 Revc -2,0,2,4,6,8,10.

真正的難點: 找出哪些數據流塊須要並行處理

7. 建立自定義數據流塊

public static void BlockCustomRun()
{
    var block = CreateMyCustomBlock();
    for (int i = 0; i < 7; i++)
    {
        block.Post(i);//target
    }
    var task = Task.Run(async () =>
    {
        var tk = Task.Run(() =>
        {
            List<int> recvResList = new List<int>();
            //此處延時爲了TryReceiveAll獲取全部數據,防止 subtractBlock 還有數據未接收

            while (true)
            {
                try
                {
                    var recvRes = block.Receive();//source
                    recvResList.Add(recvRes);
                }
                catch (System.InvalidOperationException)
                {
                    break;
                }
            }
            Console.WriteLine($"{DateTime.Now.ToString("mm:ss.fff")} Revc {string.Join(",", recvResList)}.");
        });
        block.Complete();//target
        await block.Completion;//source
        await tk;
    });
    task.Wait();
}

static IPropagatorBlock<int, int> CreateMyCustomBlock()
{
    var multiplyBlock = new TransformBlock<int, int>(item =>
    {
        int res = item * 2;
        System.Console.WriteLine($"{DateTime.Now.ToString("mm:ss.fff")} first block {res}.");
        Thread.Sleep(100);
        return res;
    });
    var addBlock = new TransformBlock<int, int>(item =>
    {
        int res = item + 2;
        System.Console.WriteLine($"{DateTime.Now.ToString("mm:ss.fff")} next block {res}.");
        Thread.Sleep(100);
        return res;
    });
    var divideBlock = new TransformBlock<int, int>(item =>
    {
        int res = item / 2;
        System.Console.WriteLine($"{DateTime.Now.ToString("mm:ss.fff")} last block {res}.");
        Thread.Sleep(100);
        return res;
    });
    var flowCompletion = new DataflowLinkOptions { PropagateCompletion = true };
    multiplyBlock.LinkTo(addBlock, flowCompletion);
    addBlock.LinkTo(divideBlock, flowCompletion);
    return DataflowBlock.Encapsulate(multiplyBlock, divideBlock);
}

輸出爲:

45:00.528 first block 0.
45:00.639 first block 2.
45:00.641 next block 2.
45:00.739 first block 4.
45:00.746 next block 4.
45:00.747 last block 1.
45:00.844 first block 6.
45:00.847 next block 6.
45:00.848 last block 2.
45:00.947 first block 8.
45:00.951 next block 8.
45:00.951 last block 3.
45:01.049 first block 10.
45:01.055 next block 10.
45:01.056 last block 4.
45:01.152 first block 12.
45:01.159 next block 12.
45:01.160 last block 5.
45:01.264 next block 14.
45:01.265 last block 6.
45:01.365 last block 7.
45:01.472 Revc 1,2,3,4,5,6,7.

DataflowBlock.Encapsulate 只會封裝只有一個輸入塊和一個輸出塊的網格。若是一個可重用的網格帶有多個輸入或輸出,就應該把它封裝進一個自定義對象

相關文章
相關標籤/搜索