今晚簡單研究下遺傳算法,學習的是一個求N個數,使之加起來剛好爲X的例子,比較簡明易懂,python實現起來也很方便。python
幾個基礎的概念:算法
個體individual,它有本身的生存力,也就是適應力,強弱就是與咱們的目標的差距數組
種羣population,個體的集合,生存力不一樣,有強有弱app
適應力fitness,針對個體而言,越小越好,看它與目標的差距dom
評分grade,針對種羣而言,一樣越小越好,定義了全部個體與目標差距的平均值學習
進化evolve,核心部分,生物的物競天擇適者生存過程,不斷淘汰種羣中的弱者,留下強者,並從強者中選擇2個做爲父母繁衍後代,後代有父母的基因,同時產生的過程當中有機率發生變異,也能夠選擇讓父母產生變異,從結果上看效果是同樣的。spa
下面的例子中,設定目標值371,種羣中個體數100,每一個個體由6個數組成,在0到100之間,每次進化留下的優良個體比例20%,不良個體被留下的機率爲5%(這個能夠不要,留下會表現有遺傳的多樣性),留下的個體中,變異機率1%。進化前會對種羣中個體的適應力排序,選擇必定比例的留下,而後讓其中的每一個按機率發生變異,結果做爲父母,繁衍後代,直到個體總量達到規定值。這裏,咱們預先知道咱們的目標值,所以發現有個體徹底適應時就能夠中止進化了,而有些問題並不能準確知道這個值,所以能夠將結果不斷的保留,最後取一個最值做爲咱們的結果,獲得原問題的近似最優解。code
1 # -*- coding:gbk -*- 2 import random, operator 3 4 def individual(length, min, max): 5 return [random.randint(min, max) for x in xrange(length)] 6 7 def population(count, length, min, max): 8 return [individual(length, min, max) for x in xrange(count)] 9 10 def fitness(individual, target): 11 sum = reduce(operator.add, individual, 0) 12 return abs(target - sum) 13 14 def grade(pop, target): 15 summed = reduce(operator.add, (fitness(x, target) for x in pop)) 16 return summed / (len(pop) * 1.0) 17 18 def evolve(pop, target, retain = 0.2, random_select = 0.05, mutate = 0.01): 19 graded = [(fitness(x, target), x) for x in pop] 20 graded = [x[1] for x in sorted(graded)] 21 retain_length = int(len(graded) * retain) 22 parents = graded[:retain_length] 23 for individual in graded[retain_length:]: 24 if random_select > random.random(): 25 parents.append(individual) 26 27 for individual in parents: 28 if mutate > random.random(): 29 pos_to_mutate = random.randint(0, len(individual) - 1) 30 individual[pos_to_mutate] = random.randint(min(individual), max(individual)) 31 parents_length = len(parents) 32 desired_length = len(pop) - parents_length 33 children = [] 34 while len(children) < desired_length: 35 male = random.randint(0, parents_length - 1) 36 female = random.randint(0, parents_length - 1) 37 if male != female: 38 male = parents[male] 39 female = parents[female] 40 half = len(male) / 2 41 child = male[:half] + female[half:] 42 children.append(child) 43 parents.extend(children) 44 return parents 45 46 47 target = 371 48 p_count = 100 49 i_length = 6 50 i_min = 0 51 i_max = 100 52 53 p = population(p_count, i_length, i_min, i_max) 54 fitness_history = [grade(p, target),] 55 for i in xrange(200): 56 p = evolve(p, target) 57 g = grade(p, target) 58 fitness_history.append(g) 59 if g == 0: 60 break 61 62 for datum in fitness_history: 63 print datum 64 65 individual = p[len(p) - 1] 66 print 'individual is' 67 sum = 0 68 for n in individual: 69 sum += n 70 print n 71 print 'total=%d,target=%d,evolve=%d'%(len(fitness_history), target, sum)