InputThe first line of each test case contains one integer N (1 <= N <= 20), indicating the number of different cards you need the collect. The second line contains N numbers p1, p2, ..., pN, (p1 + p2 + ... + pN <= 1), indicating the possibility of each card to appear in a bag of snacks.
Note there is at most one card in a bag of snacks. And it is possible that there is nothing in the bag.OutputOutput one number for each test case, indicating the expected number of bags to buy to collect all the N different cards.
You will get accepted if the difference between your answer and the standard answer is no more that 10^-4.Sample Inputios
1 0.1 2 0.1 0.4
Sample Outputapp
10.000 10.500
這道題一開始怎麼都沒想懂,其實就是一個容斥,分別計算收集齊1-n套卡的機率。
#include<iostream> #include<cstdio> #include<cstring> using namespace std; #define LL long long #define maxn 70 #define N 25 double e[N]; double p[N]; int n; int main() { LL a,b,i; //scanf("%ld",&T); while(~scanf("%d",&n)) { double ans=0; double res=1.0; int flag=0; double tmp; memset(p,0,sizeof(p)); for(int i=0;i<n;i++) { scanf("%lf",&p[i]); res-=p[i]; } for(int i=1;i<(1<<n);i++) { tmp=0,flag=0; for(int j=0;j<n;j++) if(i&((1<<j))) flag++,tmp+=p[j]; if(flag&1) ans+=1.0/tmp; else ans-=1.0/tmp; } printf("%.5lf\n",ans); } return 0; }