代碼以下:python
In [1]: def append_to_list(value, def_list=[]):算法
...: def_list.append(value)編程
...: return def_list緩存
...:閉包
In [2]: my_list = append_to_list(1)app
In [3]: my_list函數
Out[3]: [1]oop
In [4]: my_other_list = append_to_list(2)spa
In [5]: my_other_list對象
Out[5]: [1, 2] # 看到了吧,其實咱們原本只想生成[2] 可是卻把第一次運行的效果頁帶了進來
In [6]: import time
In [7]: def report_arg(my_default=time.time()):
...: print(my_default)
...:
In [8]: report_arg() # 第一次執行
1399562371.32
In [9]: time.sleep(2) # 隔了2秒
In [10]: report_arg()
1399562371.32 # 時間居然沒有變
這2個例子說明了什麼? 字典,集合,列表等等對象是不適合做爲函數默認值的。由於這個默認值實在函數創建的時候就生成了,每次調用都是用了這個對象的」緩存」。我在上段時間的分享python高級編程也說到了這個問題,這個是實際開發遇到的問題,好好檢查你學過的代碼,也許只是問題沒有暴露。
能夠這樣改,代碼以下:
def append_to_list(element, to=None):
if to is None:
to = []
to.append(element)
return to
代碼以下:
In [12]: gen = (i for i in range(5))
In [13]: 2 in gen
Out[13]: True
In [14]: 3 in gen
Out[14]: True
In [15]: 1 in gen
Out[15]: False # 1爲何不在gen裏面了? 由於調用1->2,這個時候1已經不在迭代器裏面了,被按需生成過了
In [20]: gen = (i for i in range(5))
In [21]: a_list = list(gen) # 能夠轉化成列表,固然a_tuple = tuple(gen) 也能夠
In [22]: 2 in a_list
Out[22]: True
In [23]: 3 in a_list
Out[23]: True
In [24]: 1 in a_list # 就算循環過,值還在
Out[24]: True
代碼以下:
In [29]: my_list = [lambda: i for i in range(5)]
In [30]: for l in my_list:
....: print(l())
....:
4
4
這個問題仍是上面說的python高級編程中說過具體緣由。其實就是當我賦值給my_list的時候,lambda表達式就執行了i會循環,直到 i =4,i會保留
可是能夠用生成器,代碼以下:
In [31]: my_gen = (lambda: n for n in range(5))
In [32]: for l in my_gen:
....: print(l())
....:
1
2
3
4
也能夠堅持用list,代碼以下:
In [33]: my_list = [lambda x=i: x for i in range(5)] # 看我給每一個lambda表達式賦了默認值
In [34]: for l in my_list:
....: print(l())
....:
0
1
2
3
4
有點很差懂是吧,在看看python的另一個魔法,代碼以下:
In [35]: def groupby(items, size):
....: return zip(*[iter(items)]*size)
....:
In [36]: groupby(range(9), 3)
Out[36]: [(0, 1, 2), (3, 4, 5), (6, 7, 8)]
一個分組的函數,看起來很很差懂,對吧?咱們來解析下這裏
代碼以下:
In [39]: [iter(items)]*3
Out[39]:
[<listiterator at 0x10e155fd0>,
<listiterator at 0x10e155fd0>,
<listiterator at 0x10e155fd0>] # 看到了吧, 其實就是把items變成可迭代的, 重複三回(同一個對象哦), 可是別忘了,每次都.next(), 因此起到了分組的做用
In [40]: [lambda x=i: x for i in range(5)]
Out[40]:
[<function __main__.<lambda>>,
<function __main__.<lambda>>,
<function __main__.<lambda>>,
<function __main__.<lambda>>,
<function __main__.<lambda>>] # 看懂了嗎?
代碼以下:
In [44]: a = [1, 2, 3, 4, 5]
In [45]: for i in a:
....: if not i % 2:
....: a.remove(i)
....:
In [46]: a
Out[46]: [1, 3, 5] # 沒有問題
In [50]: b = [2, 4, 5, 6]
In [51]: for i in b:
....: if not i % 2:
....: b.remove(i)
....:
In [52]: b
Out[52]: [4, 5] # 原本我想要的結果應該是去除偶數的列表
思考一下,爲何 – 是由於你對列表的remove,影響了它的index
代碼以下:
In [53]: b = [2, 4, 5, 6]
In [54]: for index, item in enumerate(b):
....: print(index, item)
....: if not item % 2:
....: b.remove(item)
....:
(0, 2) # 這裏沒有問題 2被刪除了
(1, 5) # 由於2被刪除目前的列表是[4, 5, 6], 因此索引list[1]直接去找5, 忽略了4
(2, 6)
代碼以下:
In [55]: my_list = [1, 2, 3, 4, 5]
In [56]: my_list[5] # 根本沒有這個元素
---------------------------------------------------------------------------
IndexError Traceback (most recent call last)
<ipython-input-56-037d00de8360> in <module>()
----> 1 my_list[5]
IndexError: list index out of range # 拋異常了
In [57]: my_list[5:] # 可是能夠這樣, 必定要注意, 用好了是trick,用錯了就是坑啊
Out[57]: []
代碼以下:
In [58]: def my_func():
....: print(var) # 我能夠先調用一個未定義的變量
....:
In [59]: var = 'global' # 後賦值
In [60]: my_func() # 反正只要調用函數時候變量被定義了就能夠了
global
In [61]: def my_func():
....: var = 'locally changed'
....:
In [62]: var = 'global'
In [63]: my_func()
In [64]: print(var)
global # 局部變量沒有影響到全局變量
In [65]: def my_func():
....: print(var) # 雖然你全局設置這個變量, 可是局部變量有同名的, python覺得你忘了定義本地變量了
....: var = 'locally changed'
....:
In [66]: var = 'global'
In [67]: my_func()
---------------------------------------------------------------------------
UnboundLocalError Traceback (most recent call last)
<ipython-input-67-d82eda95de40> in <module>()
----> 1 my_func()
<ipython-input-65-0ad11d690936> in my_func()
1 def my_func():
----> 2 print(var)
3 var = 'locally changed'
4
UnboundLocalError: local variable 'var' referenced before assignment
In [68]: def my_func():
....: global var # 這個時候得加全局了
....: print(var) # 這樣就能正常使用
....: var = 'locally changed'
....:
In [69]: var = 'global'
In [70]:
In [70]: my_func()
global
In [71]: print(var)
locally changed # 可是使用了global就改變了全局變量
代碼以下:
In [72]: my_list1 = [[1, 2, 3]] * 2
In [73]: my_list1
Out[73]: [[1, 2, 3], [1, 2, 3]]
In [74]: my_list1[1][0] = 'a' # 我只修改子列表中的一項
In [75]: my_list1
Out[75]: [['a', 2, 3], ['a', 2, 3]] # 可是都影響到了
In [76]: my_list2 = [[1, 2, 3] for i in range(2)] # 用這種循環生成不一樣對象的方法就不影響了
In [77]: my_list2[1][0] = 'a'
In [78]: my_list2
Out[78]: [[1, 2, 3], ['a', 2, 3]]
代碼以下:
In [1]: class A(object):
...: def foo(self):
...: print("class A")
...:
In [2]: class B(object):
...: def foo(self):
...: print("class B")
...:
In [3]: class C(A, B):
...: pass
...:
In [4]: C().foo()
class A # 例子很好懂, C繼承了A和B,從左到右,發現A有foo方法,返回了
看起來都是很簡單,有次序的從底向上,從前向後找,找到就返回。再看例子:
代碼以下:
In [5]: class A(object):
...: def foo(self):
...: print("class A")
...:
In [6]: class B(A):
...: pass
...:
In [7]: class C(A):
...: def foo(self):
...: print("class C")
...:
In [8]: class D(B,C):
...: pass
...:
In [9]: D().foo()
class C # ? 按道理, 順序是 D->B->A,爲何找到了C哪去了
這也就涉及了MRO(Method Resolution Order):
代碼以下:
In [10]: D.__mro__
Out[10]: (__main__.D, __main__.B, __main__.C, __main__.A, object)
MRO的算法有點小複雜,既不是深度優先,也不是廣度優先。
代碼以下:
In [17]: print('ID:', id(a_list))
('ID:', 4481323592)
In [18]: a_list += [1]
In [19]: print('ID (+=):', id(a_list))
('ID (+=):', 4481323592) # 使用+= 仍是在原來的列表上操做
In [20]: a_list = a_list + [2]
In [21]: print('ID (list = list + ...):', id(a_list))
('ID (list = list + ...):', 4481293056) # 簡單的+其實已經改變了原有列表
In [28]: a_list = []
In [29]: id(a_list)
Out[29]: 4481326976
In [30]: a_list.append(1)
In [31]: id(a_list)
Out[31]: 4481326976 # append 是在原有列表添加
In [32]: a_list.extend([2])
In [33]: id(a_list)
Out[33]: 4481326976 # extend 也是在原有列表上添加
這是一個坑,代碼以下:
In [34]: import datetime
In [35]: print('"datetime.time(0,0,0)" (Midnight) ->', bool(datetime.time(0,0,0)))
('"datetime.time(0,0,0)" (Midnight) ->', False)
In [36]: print('"datetime.time(1,0,0)" (1 am) ->', bool(datetime.time(1,0,0)))
('"datetime.time(1,0,0)" (1 am) ->', True)
個人理解是「s」是判斷2個對象的身份, ==是判斷2個對象的值,代碼以下:
In [37]: a = 1
In [38]: b = 1
In [39]: print('a is b', bool(a is b))
('a is b', True)
In [40]: c = 999
In [41]: d = 999
In [42]: print('c is d', bool(c is d))
('c is d', False) # 緣由是python的內存管理,緩存了-5 - 256的對象
In [43]: print('256 is 257-1', 256 is 257-1)
('256 is 257-1', True)
In [44]: print('257 is 258-1', 257 is 258 - 1)
('257 is 258-1', False)
In [45]: print('-5 is -6+1', -5 is -6+1)
('-5 is -6+1', True)
In [46]: print('-7 is -6-1', -7 is -6-1)
('-7 is -6-1', False)
In [47]: a = 'hello world!'
In [48]: b = 'hello world!'
In [49]: print('a is b,', a is b)
('a is b,', False) # 很明顯 他們沒有被緩存,這是2個字段串的對象
In [50]: print('a == b,', a == b)
('a == b,', True) # 但他們的值相同
# But, 有個特例
In [51]: a = float('nan')
In [52]: print('a is a,', a is a)
('a is a,', True)
In [53]: print('a == a,', a == a)
('a == a,', False) # 亮瞎我眼睛了~
咱們在實際開發中均可以向對某列表的對象作修改,可是可能不但願改動原來的列表. 淺拷貝只拷貝父對象,深拷貝還會拷貝對象的內部的子對象,代碼以下:
In [65]: list1 = [1, 2]
In [66]: list2 = list1 # 就是個引用, 你操做list2,其實list1的結果也會變
In [67]: list3 = list1[:]
In [69]: import copy
In [70]: list4 = copy.copy(list1) # 他和list3同樣 都是淺拷貝
In [71]: id(list1), id(list2), id(list3), id(list4)
Out[71]: (4480620232, 4480620232, 4479667880, 4494894720)
In [72]: list2[0] = 3
In [73]: print('list1:', list1)
('list1:', [3, 2])
In [74]: list3[0] = 4
In [75]: list4[1] = 4
In [76]: print('list1:', list1)
('list1:', [3, 2]) # 對list3和list4操做都沒有對list1有影響
# 再看看深拷貝和淺拷貝的區別
In [88]: from copy import copy, deepcopy
In [89]: list1 = [[1], [2]]
In [90]: list2 = copy(list1) # 仍是淺拷貝
In [91]: list3 = deepcopy(list1) # 深拷貝
In [92]: id(list1), id(list2), id(list3)
Out[92]: (4494896592, 4495349160, 4494896088)
In [93]: list2[0][0] = 3
In [94]: print('list1:', list1)
('list1:', [[3], [2]]) # 看到了吧 假如你操做其子對象 仍是和引用同樣 影響了源
In [95]: list3[0][0] = 5
In [96]: print('list1:', list1)
('list1:', [[3], [2]]) # 深拷貝就不會影響
代碼以下:
In [97]: isinstance(True, int)
Out[97]: True
In [98]: True + True
Out[98]: 2
In [99]: 3 * True + True
Out[99]: 4
In [100]: 3 * True - False
Out[100]: 3
In [104]: True << 10
Out[104]: 1024
代碼以下:
In [111]: tup = ([],)
In [112]: tup[0] += [1]
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-112-d4f292cf35de> in <module>()
----> 1 tup[0] += [1]
TypeError: 'tuple' object does not support item assignment
In [113]: tup
Out[113]: ([1],) # 我靠 又是亮瞎我眼睛,明明拋了異常 還能修改?
In [114]: tup = ([],)
In [115]: tup[0].extend([1])
In [116]: tup[0]
Out[116]: [1] # 好吧,我有點看明白了, 雖然我不能直接操做元組,可是不能阻止我操做元組中可變的子對象(list)
這裏有個不錯的解釋Python’s += Is Weird, Part II:
代碼以下:
In [117]: my_tup = (1,)
In [118]: my_tup += (4,)
In [119]: my_tup = my_tup + (5,)
In [120]: my_tup
Out[120]: (1, 4, 5) # ? 嗯 不是不能操做元組嘛?
In [121]: my_tup = (1,)
In [122]: print(id(my_tup))
4481317904
In [123]: my_tup += (4,)
In [124]: print(id(my_tup))
4480606864 # 操做的不是原來的元組 因此能夠
In [125]: my_tup = my_tup + (5,)
In [126]: print(id(my_tup))
4474234912
代碼以下:
In [127]: class my_class(object^E):
.....: def public_method(self):
.....: print('Hello public world!')
.....: def __private_method(self): # 私有以雙下劃線開頭
.....: print('Hello private world!')
.....: def call_private_method_in_class(self):
.....: self.__private_method()
In [132]: my_instance = my_class()
In [133]: my_instance.public_method()
Hello public world! # 普通方法
In [134]: my_instance._my_class__private_method()
Hello private world! # 私有的能夠加"_ + 類名字 + 私有方法名字」
In [135]: my_instance.call_private_method_in_class()
Hello private world! # 還能夠經過類提供的公有接口內部訪問
In [136]: my_instance._my_class__private_variable
Out[136]: 1
代碼以下:
In [150]: try:
.....: print('third element:', a_list[2])
.....: except IndexError:
.....: print('raised IndexError')
.....: else:
.....: print('no error in try-block') # 只有在try裏面沒有異常的時候纔會執行else裏面的表達式
.....:
raised IndexError # 拋異常了 沒徹底完成
In [153]: i = 0
In [154]: while i < 2:
.....: print(i)
.....: i += 1
.....: else:
.....: print('in else')
.....:
0
1
in else # while也支持哦~
In [155]: i = 0
In [156]: while i < 2:
.....: print(i)
.....: i += 1
.....: break
.....: else:
.....: print('completed while-loop')
.....:
0 # 被break了 沒有徹底執行完 就不執行else裏面的了
In [158]: for i in range(2):
.....: print(i)
.....: else:
.....: print('completed for-loop')
.....:
0
1
completed for-loop
In [159]: for i in range(2):
.....: print(i)
.....: break
.....: else:
.....: print('completed for-loop')
.....:
0 # 也是由於break了