Prometheus之於kubernetes(監控領域),如kubernetes之於容器編排。
隨着heapster再也不開發和維護以及influxdb 集羣方案再也不開源,heapster+influxdb的監控方案,只適合一些規模比較小的k8s集羣。而prometheus整個社區很是活躍,除了官方社區提供了一系列高質量的exporter,例如node_exporter等。Telegraf(集中採集metrics) + prometheus的方案,也是一種減小部署和管理各類exporter工做量的很好的方案。
今天主要講講我司在使用prometheus過程當中,存儲方面的一些實戰經驗。html
經過prometheus的架構圖能夠看出,prometheus提供了本地存儲,即tsdb時序數據庫。本地存儲的優點就是運維簡單,缺點就是沒法海量的metrics持久化和數據存在丟失的風險,咱們在實際使用過程當中,出現過幾回wal文件損壞,沒法再寫入的問題。
固然prometheus2.0之後壓縮數據能力獲得了很大的提高。爲了解決單節點存儲的限制,prometheus沒有本身實現集羣存儲,而是提供了遠程讀寫的接口,讓用戶本身選擇合適的時序數據庫來實現prometheus的擴展性。node
prometheus經過下面兩種方式來實現與其餘的遠端存儲系統對接git
其實監控不只僅是體如今能夠實時掌握系統運行狀況,及時報警這些。並且監控所採集的數據,在如下幾個方面是有價值的github
基於以上的幾點,clickhouse知足咱們使用場景。
Clickhouse是一個高性能的列式數據庫,由於側重於分析,因此支持豐富的分析函數。正則表達式
下面是Clickhouse官方推薦的幾種使用場景:docker
ck適合用於存儲Time series
此外社區已經有graphouse項目,把ck做爲Graphite的存儲。數據庫
本地mac,docker 啓動單臺ck,承接了3個集羣的metrics,均值達到12910條/s。寫入毫無壓力。其實在網盟等公司,實際使用時,達到30萬/s。apache
fbe6a4edc3eb :) select count(*) from metrics.samples; SELECT count(*) FROM metrics.samples ┌──count()─┐ │ 22687301 │ └──────────┘ 1 rows in set. Elapsed: 0.014 sec. Processed 22.69 million rows, 45.37 MB (1.65 billion rows/s., 3.30 GB/s.)
其中最有可能耗時的查詢:
1)查詢聚合sum安全
fbe6a4edc3eb :) select sum(val) from metrics.samples where arrayExists(x -> 1 == match(x, 'cid=9'),tags) = 1 and name = 'machine_cpu_cores' and ts > '2017-07-11 08:00:00' SELECT sum(val) FROM metrics.samples WHERE (arrayExists(x -> (1 = match(x, 'cid=9')), tags) = 1) AND (name = 'machine_cpu_cores') AND (ts > '2017-07-11 08:00:00') ┌─sum(val)─┐ │ 6324 │ └──────────┘ 1 rows in set. Elapsed: 0.022 sec. Processed 57.34 thousand rows, 34.02 MB (2.66 million rows/s., 1.58 GB/s.)
2)group by 查詢session
fbe6a4edc3eb :) select sum(val), time from metrics.samples where arrayExists(x -> 1 == match(x, 'cid=9'),tags) = 1 and name = 'machine_cpu_cores' and ts > '2017-07-11 08:00:00' group by toDate(ts) as time; SELECT sum(val), time FROM metrics.samples WHERE (arrayExists(x -> (1 = match(x, 'cid=9')), tags) = 1) AND (name = 'machine_cpu_cores') AND (ts > '2017-07-11 08:00:00') GROUP BY toDate(ts) AS time ┌─sum(val)─┬───────time─┐ │ 6460 │ 2018-07-11 │ │ 136 │ 2018-07-12 │ └──────────┴────────────┘ 2 rows in set. Elapsed: 0.023 sec. Processed 64.11 thousand rows, 36.21 MB (2.73 million rows/s., 1.54 GB/s.)
3) 正則表達式
fbe6a4edc3eb :) select sum(val) from metrics.samples where name = 'container_memory_rss' and arrayExists(x -> 1 == match(x, '^pod_name=ofo-eva-hub'),tags) = 1 ; SELECT sum(val) FROM metrics.samples WHERE (name = 'container_memory_rss') AND (arrayExists(x -> (1 = match(x, '^pod_name=ofo-eva-hub')), tags) = 1) ┌─────sum(val)─┐ │ 870016516096 │ └──────────────┘ 1 rows in set. Elapsed: 0.142 sec. Processed 442.37 thousand rows, 311.52 MB (3.11 million rows/s., 2.19 GB/s.)
總結:
利用好所建索引,即便在大數據量下,查詢性能很是好。
關於此架構,有如下幾點:
而clickhouse 的集羣示意圖以下:
這塊詳細步驟和思路,請參考ClickHouse集羣搭建從0到1。感謝新浪的鵬哥指點。
zk集羣部署注意事項:
The ZooKeeper server won't delete files from old snapshots and logs when using the default configuration (see autopurge), and this is the responsibility of the operator.
ck官方給出的配置以下zoo.cfg:
# http://hadoop.apache.org/zookeeper/docs/current/zookeeperAdmin.html # The number of milliseconds of each tick tickTime=2000 # The number of ticks that the initial # synchronization phase can take initLimit=30000 # The number of ticks that can pass between # sending a request and getting an acknowledgement syncLimit=10 maxClientCnxns=2000 maxSessionTimeout=60000000 # the directory where the snapshot is stored. dataDir=/opt/zookeeper/{{ cluster['name'] }}/data # Place the dataLogDir to a separate physical disc for better performance dataLogDir=/opt/zookeeper/{{ cluster['name'] }}/logs autopurge.snapRetainCount=10 autopurge.purgeInterval=1 # To avoid seeks ZooKeeper allocates space in the transaction log file in # blocks of preAllocSize kilobytes. The default block size is 64M. One reason # for changing the size of the blocks is to reduce the block size if snapshots # are taken more often. (Also, see snapCount). preAllocSize=131072 # Clients can submit requests faster than ZooKeeper can process them, # especially if there are a lot of clients. To prevent ZooKeeper from running # out of memory due to queued requests, ZooKeeper will throttle clients so that # there is no more than globalOutstandingLimit outstanding requests in the # system. The default limit is 1,000.ZooKeeper logs transactions to a # transaction log. After snapCount transactions are written to a log file a # snapshot is started and a new transaction log file is started. The default # snapCount is 10,000. snapCount=3000000 # If this option is defined, requests will be will logged to a trace file named # traceFile.year.month.day. #traceFile= # Leader accepts client connections. Default value is "yes". The leader machine # coordinates updates. For higher update throughput at thes slight expense of # read throughput the leader can be configured to not accept clients and focus # on coordination. leaderServes=yes standaloneEnabled=false dynamicConfigFile=/etc/zookeeper-{{ cluster['name'] }}/conf/zoo.cfg.dynamic
每一個版本的ck配置文件不太同樣,這裏貼出一個390版本的
<?xml version="1.0"?> <yandex> <logger> <!-- Possible levels: https://github.com/pocoproject/poco/blob/develop/Foundation/include/Poco/Logger.h#L105 --> <level>information</level> <log>/data/ck/log/clickhouse-server.log</log> <errorlog>/data/ck/log/clickhouse-server.err.log</errorlog> <size>1000M</size> <count>10</count> <!-- <console>1</console> --> <!-- Default behavior is autodetection (log to console if not daemon mode and is tty) --> </logger> <!--display_name>production</display_name--> <!-- It is the name that will be shown in the client --> <http_port>8123</http_port> <tcp_port>9000</tcp_port> <!-- For HTTPS and SSL over native protocol. --> <!-- <https_port>8443</https_port> <tcp_port_secure>9440</tcp_port_secure> --> <!-- Used with https_port and tcp_port_secure. Full ssl options list: https://github.com/ClickHouse-Extras/poco/blob/master/NetSSL_OpenSSL/include/Poco/Net/SSLManager.h#L71 --> <openSSL> <server> <!-- Used for https server AND secure tcp port --> <!-- openssl req -subj "/CN=localhost" -new -newkey rsa:2048 -days 365 -nodes -x509 -keyout /etc/clickhouse-server/server.key -out /etc/clickhouse-server/server.crt --> <certificateFile>/etc/clickhouse-server/server.crt</certificateFile> <privateKeyFile>/etc/clickhouse-server/server.key</privateKeyFile> <!-- openssl dhparam -out /etc/clickhouse-server/dhparam.pem 4096 --> <dhParamsFile>/etc/clickhouse-server/dhparam.pem</dhParamsFile> <verificationMode>none</verificationMode> <loadDefaultCAFile>true</loadDefaultCAFile> <cacheSessions>true</cacheSessions> <disableProtocols>sslv2,sslv3</disableProtocols> <preferServerCiphers>true</preferServerCiphers> </server> <client> <!-- Used for connecting to https dictionary source --> <loadDefaultCAFile>true</loadDefaultCAFile> <cacheSessions>true</cacheSessions> <disableProtocols>sslv2,sslv3</disableProtocols> <preferServerCiphers>true</preferServerCiphers> <!-- Use for self-signed: <verificationMode>none</verificationMode> --> <invalidCertificateHandler> <!-- Use for self-signed: <name>AcceptCertificateHandler</name> --> <name>RejectCertificateHandler</name> </invalidCertificateHandler> </client> </openSSL> <!-- Default root page on http[s] server. For example load UI from https://tabix.io/ when opening http://localhost:8123 --> <!-- <http_server_default_response><![CDATA[<html ng-app="SMI2"><head><base href="http://ui.tabix.io/"></head><body><div ui-view="" class="content-ui"></div><script src="http://loader.tabix.io/master.js"></script></body></html>]]></http_server_default_response> --> <!-- Port for communication between replicas. Used for data exchange. --> <interserver_http_port>9009</interserver_http_port> <!-- Hostname that is used by other replicas to request this server. If not specified, than it is determined analoguous to 'hostname -f' command. This setting could be used to switch replication to another network interface. --> <!-- <interserver_http_host>example.yandex.ru</interserver_http_host> --> <!-- Listen specified host. use :: (wildcard IPv6 address), if you want to accept connections both with IPv4 and IPv6 from everywhere. --> <!-- <listen_host>::</listen_host> --> <!-- Same for hosts with disabled ipv6: --> <listen_host>0.0.0.0</listen_host> <!-- Default values - try listen localhost on ipv4 and ipv6: --> <!-- <listen_host>::1</listen_host> <listen_host>127.0.0.1</listen_host> --> <!-- Don't exit if ipv6 or ipv4 unavailable, but listen_host with this protocol specified --> <!-- <listen_try>0</listen_try> --> <!-- Allow listen on same address:port --> <!-- <listen_reuse_port>0</listen_reuse_port> --> <!-- <listen_backlog>64</listen_backlog> --> <max_connections>4096</max_connections> <keep_alive_timeout>3</keep_alive_timeout> <!-- Maximum number of concurrent queries. --> <max_concurrent_queries>100</max_concurrent_queries> <!-- Set limit on number of open files (default: maximum). This setting makes sense on Mac OS X because getrlimit() fails to retrieve correct maximum value. --> <!-- <max_open_files>262144</max_open_files> --> <!-- Size of cache of uncompressed blocks of data, used in tables of MergeTree family. In bytes. Cache is single for server. Memory is allocated only on demand. Cache is used when 'use_uncompressed_cache' user setting turned on (off by default). Uncompressed cache is advantageous only for very short queries and in rare cases. --> <uncompressed_cache_size>8589934592</uncompressed_cache_size> <!-- Approximate size of mark cache, used in tables of MergeTree family. In bytes. Cache is single for server. Memory is allocated only on demand. You should not lower this value. --> <mark_cache_size>5368709120</mark_cache_size> <!-- Path to data directory, with trailing slash. --> <path>/data/ck/data/</path> <!-- Path to temporary data for processing hard queries. --> <tmp_path>/data/ck/tmp/</tmp_path> <!-- Directory with user provided files that are accessible by 'file' table function. --> <user_files_path>/data/ck/user_files/</user_files_path> <!-- Path to configuration file with users, access rights, profiles of settings, quotas. --> <users_config>users.xml</users_config> <!-- Default profile of settings. --> <default_profile>default</default_profile> <!-- System profile of settings. This settings are used by internal processes (Buffer storage, Distibuted DDL worker and so on). --> <!-- <system_profile>default</system_profile> --> <!-- Default database. --> <default_database>default</default_database> <!-- Server time zone could be set here. Time zone is used when converting between String and DateTime types, when printing DateTime in text formats and parsing DateTime from text, it is used in date and time related functions, if specific time zone was not passed as an argument. Time zone is specified as identifier from IANA time zone database, like UTC or Africa/Abidjan. If not specified, system time zone at server startup is used. Please note, that server could display time zone alias instead of specified name. Example: W-SU is an alias for Europe/Moscow and Zulu is an alias for UTC. --> <!-- <timezone>Europe/Moscow</timezone> --> <!-- You can specify umask here (see "man umask"). Server will apply it on startup. Number is always parsed as octal. Default umask is 027 (other users cannot read logs, data files, etc; group can only read). --> <!-- <umask>022</umask> --> <!-- Configuration of clusters that could be used in Distributed tables. https://clickhouse.yandex/docs/en/table_engines/distributed/ --> <remote_servers> <prometheus_ck_cluster> <!-- 數據分片1 --> <shard> <internal_replication>false</internal_replication> <replica> <host>ck11.ruly.xxx.net</host> <port>9000</port> </replica> <replica> <host>ck12.ruly.xxx.net</host> <port>9000</port> </replica> </shard> </prometheus_ck_cluster> </remote_servers> <!-- If element has 'incl' attribute, then for it's value will be used corresponding substitution from another file. By default, path to file with substitutions is /etc/metrika.xml. It could be changed in config in 'include_from' element. Values for substitutions are specified in /yandex/name_of_substitution elements in that file. --> <!-- ZooKeeper is used to store metadata about replicas, when using Replicated tables. Optional. If you don't use replicated tables, you could omit that. See https://clickhouse.yandex/docs/en/table_engines/replication/ --> <!-- ZK --> <zookeeper> <node index="1"> <host>zk1.ruly.xxx.net</host> <port>2181</port> </node> <node index="2"> <host>zk2.ruly.xxx.net</host> <port>2181</port> </node> <node index="3"> <host>zk3.ruly.xxx.net</host> <port>2181</port> </node> </zookeeper> <!-- Substitutions for parameters of replicated tables. Optional. If you don't use replicated tables, you could omit that. See https://clickhouse.yandex/docs/en/table_engines/replication/#creating-replicated-tables --> <macros> <shard>1</shard> <replica>ck11.ruly.ofo.net</replica> </macros> <!-- Reloading interval for embedded dictionaries, in seconds. Default: 3600. --> <builtin_dictionaries_reload_interval>3600</builtin_dictionaries_reload_interval> <!-- Maximum session timeout, in seconds. Default: 3600. --> <max_session_timeout>3600</max_session_timeout> <!-- Default session timeout, in seconds. Default: 60. --> <default_session_timeout>60</default_session_timeout> <!-- Sending data to Graphite for monitoring. Several sections can be defined. --> <!-- interval - send every X second root_path - prefix for keys hostname_in_path - append hostname to root_path (default = true) metrics - send data from table system.metrics events - send data from table system.events asynchronous_metrics - send data from table system.asynchronous_metrics --> <!-- <graphite> <host>localhost</host> <port>42000</port> <timeout>0.1</timeout> <interval>60</interval> <root_path>one_min</root_path> <hostname_in_path>true</hostname_in_path> <metrics>true</metrics> <events>true</events> <asynchronous_metrics>true</asynchronous_metrics> </graphite> <graphite> <host>localhost</host> <port>42000</port> <timeout>0.1</timeout> <interval>1</interval> <root_path>one_sec</root_path> <metrics>true</metrics> <events>true</events> <asynchronous_metrics>false</asynchronous_metrics> </graphite> --> <!-- Query log. Used only for queries with setting log_queries = 1. --> <query_log> <!-- What table to insert data. If table is not exist, it will be created. When query log structure is changed after system update, then old table will be renamed and new table will be created automatically. --> <database>system</database> <table>query_log</table> <!-- PARTITION BY expr https://clickhouse.yandex/docs/en/table_engines/custom_partitioning_key/ Example: event_date toMonday(event_date) toYYYYMM(event_date) toStartOfHour(event_time) --> <partition_by>toYYYYMM(event_date)</partition_by> <!-- Interval of flushing data. --> <flush_interval_milliseconds>7500</flush_interval_milliseconds> </query_log> <!-- Uncomment if use part_log <part_log> <database>system</database> <table>part_log</table> <flush_interval_milliseconds>7500</flush_interval_milliseconds> </part_log> --> <!-- Parameters for embedded dictionaries, used in Yandex.Metrica. See https://clickhouse.yandex/docs/en/dicts/internal_dicts/ --> <!-- Path to file with region hierarchy. --> <!-- <path_to_regions_hierarchy_file>/opt/geo/regions_hierarchy.txt</path_to_regions_hierarchy_file> --> <!-- Path to directory with files containing names of regions --> <!-- <path_to_regions_names_files>/opt/geo/</path_to_regions_names_files> --> <!-- Configuration of external dictionaries. See: https://clickhouse.yandex/docs/en/dicts/external_dicts/ --> <dictionaries_config>*_dictionary.xml</dictionaries_config> <!-- Uncomment if you want data to be compressed 30-100% better. Don't do that if you just started using ClickHouse. --> <!-- <compression incl="clickhouse_compression"> --> <!-- <!- - Set of variants. Checked in order. Last matching case wins. If nothing matches, lz4 will be used. - -> <case> <!- - Conditions. All must be satisfied. Some conditions may be omitted. - -> <min_part_size>10000000000</min_part_size> <!- - Min part size in bytes. - -> <min_part_size_ratio>0.01</min_part_size_ratio> <!- - Min size of part relative to whole table size. - -> <!- - What compression method to use. - -> <method>zstd</method> </case> --> <!-- </compression> --> <!-- Allow to execute distributed DDL queries (CREATE, DROP, ALTER, RENAME) on cluster. Works only if ZooKeeper is enabled. Comment it if such functionality isn't required. --> <distributed_ddl> <!-- Path in ZooKeeper to queue with DDL queries --> <path>/clickhouse/task_queue/ddl</path> <!-- Settings from this profile will be used to execute DDL queries --> <!-- <profile>default</profile> --> </distributed_ddl> <!-- Settings to fine tune MergeTree tables. See documentation in source code, in MergeTreeSettings.h --> <!-- <merge_tree> <max_suspicious_broken_parts>5</max_suspicious_broken_parts> </merge_tree> --> <!-- Protection from accidental DROP. If size of a MergeTree table is greater than max_table_size_to_drop (in bytes) than table could not be dropped with any DROP query. If you want do delete one table and don't want to restart clickhouse-server, you could create special file <clickhouse-path>/flags/force_drop_table and make DROP once. By default max_table_size_to_drop is 50GB, max_table_size_to_drop=0 allows to DROP any tables. Uncomment to disable protection. --> <!-- <max_table_size_to_drop>0</max_table_size_to_drop> --> <!-- Example of parameters for GraphiteMergeTree table engine --> <!-- <graphite_rollup> <pattern> <regexp>click_cost</regexp> <function>any</function> <retention> <age>0</age> <precision>3600</precision> </retention> <retention> <age>86400</age> <precision>60</precision> </retention> </pattern> <default> <function>max</function> <retention> <age>0</age> <precision>60</precision> </retention> <retention> <age>3600</age> <precision>300</precision> </retention> <retention> <age>86400</age> <precision>3600</precision> </retention> </default> </graphite_rollup> --> <!-- Directory in <clickhouse-path> containing schema files for various input formats. The directory will be created if it doesn't exist. --> <format_schema_path>/var/lib/clickhouse/format_schemas/</format_schema_path> <!-- Uncomment to disable ClickHouse internal DNS caching. --> <!-- <disable_internal_dns_cache>1</disable_internal_dns_cache> --> <!-- Max insert block size set to 4x than default size 1048576 --> </yandex>
Prometheus-Clickhuse-Adapter(Prom2click) 是一個將clickhouse做爲prometheus 數據遠程存儲的適配器。
prometheus-clickhuse-adapter,該項目缺少日誌,對於一個實際生產的項目,是不夠的,此外一些數據庫鏈接細節實現的也不夠完善,已經在實際使用過程當中將改進部分做爲pr提交。
在實際使用過程當中,要注意併發寫入數據的數量,及時調整啓動參數ch.batch 的大小,實際就是批量寫入ck的數量,目前咱們設置的是65536。由於ck的Merge引擎有一個300的限制,超過會報錯
Too many parts (300). Merges are processing significantly slower than inserts
300是指 processing,不是指一次批量插入的條數。
這篇文章主要講了我司Prometheus在存儲方面的探索和實戰的一點經驗。後續會講Prometheus查詢和採集分離的高可用架構方案。