摘要: 轉載請註明出處,樓燚(yì)航的blog,http://www.cnblogs.com/louyihang-loves-baiyan/python
在上一篇文章中,咱們是將對caffe的調用隔離了出來,能夠說至關於原來caffe源碼下的tools中cpp文件使用相同,而後本身寫了個CMakeLists.txt進行編譯。這裏是進一步將代碼進行分離,封裝成libfaster_rcnn.so文件進行使用。對於部分接口,我可能作了一些改動。
目錄結構
├── CMakeLists.txt
├── lib
│ ├── CMakeLists.txt
│ ├── faster_rcnn.cpp
│ ├── faster_rcnn.hpp
├── main.cpp
├── pbs_cxx_faster_rcnn_demo.jobc++
在這裏main.cpp就是直接調用faster_rcnn.cpp的接口,他的內容也很簡單,只是在以前的基礎上,再加上libfaster_rcnn.so這個動態庫文件git
#include "faster_rcnn.hpp" int main() { string model_file = "/home/lyh1/workspace/py-faster-rcnn/models/pascal_voc/VGG_CNN_M_1024/faster_rcnn_alt_opt/faster_rcnn_test.pt"; string weights_file = "/home/lyh1/workspace/py-faster-rcnn/output/default/yuanzhang_car/vgg_cnn_m_1024_fast_rcnn_stage2_iter_40000.caffemodel"; int GPUID=0; Caffe::SetDevice(GPUID); Caffe::set_mode(Caffe::GPU); Detector det = Detector(model_file, weights_file); det.Detect("/home/lyh1/workspace/py-faster-rcnn/data/demo/car.jpg"); return 0; }
能夠看到這裏只是include了faster_rcnn.hpp頭文件,其對應的CMakeLists.txt文件以下:github
#This part is used for compile faster_rcnn_demo.cpp cmake_minimum_required (VERSION 2.8) project (main_demo) add_executable(main main.cpp) include_directories ( "${PROJECT_SOURCE_DIR}/../caffe-fast-rcnn/include" "${PROJECT_SOURCE_DIR}/../lib/nms" "${PROJECT_SOURCE_DIR}/lib" /share/apps/local/include /usr/local/include /opt/python/include/python2.7 /share/apps/opt/intel/mkl/include /usr/local/cuda/include ) target_link_libraries(main /home/lyh1/workspace/py-faster-rcnn/faster_cxx_lib/lib/libfaster_rcnn.so /home/lyh1/workspace/py-faster-rcnn/caffe-fast-rcnn/build/lib/libcaffe.so /home/lyh1/workspace/py-faster-rcnn/lib/nms/gpu_nms.so /share/apps/local/lib/libopencv_highgui.so /share/apps/local/lib/libopencv_core.so /share/apps/local/lib/libopencv_imgproc.so /share/apps/local/lib/libopencv_imgcodecs.so /share/apps/local/lib/libglog.so /share/apps/local/lib/libboost_system.so /share/apps/local/lib/libboost_python.so /share/apps/local/lib/libglog.so /opt/rh/python27/root/usr/lib64/libpython2.7.so )
對於faster_rcnn.hpp
和faster_rcnn.cpp
,咱們須要將他們編譯成動態庫,下面是他們對應的CMakeLists.txt,在文件中,能夠看到跟上面這個區別是用了add_library語句,而且加入了SHARED關鍵字,SHARED表明動態庫。其次,在編譯動態庫的過程當中,是不須要連接的,可是咱們知道這個庫是依賴別的不少個庫的,因此在最後造成可執行文件也就是上面這個CMakeLists.txt,咱們須要添加這個動態庫所依賴的那些動態庫,至此就OK了。編譯的話,很是傻瓜cmake .
而後在執行make
便可。app
cmake_minimum_required (VERSION 2.8) SET (SRC_LIST faster_rcnn.cpp) include_directories ( "${PROJECT_SOURCE_DIR}/../../caffe-fast-rcnn/include" "${PROJECT_SOURCE_DIR}/../../lib/nms" /share/apps/local/include /usr/local/include /opt/python/include/python2.7 /share/apps/opt/intel/mkl/include /usr/local/cuda/include ) add_library(faster_rcnn SHARED ${SRC_LIST})
首先將原來的cpp文件中的聲明提取出來,比較簡單,就是hpp文件對應cpp文件。以下:less
#ifndef FASTER_RCNN_HPP #define FASTER_RCNN_HPP #include <stdio.h> // for snprintf #include <string> #include <vector> #include <math.h> #include <fstream> #include <boost/python.hpp> #include "caffe/caffe.hpp" #include "gpu_nms.hpp" #include <opencv2/core/core.hpp> #include <opencv2/highgui/highgui.hpp> #include <opencv2/imgproc/imgproc.hpp> using namespace caffe; using namespace std; #define max(a, b) (((a)>(b)) ? (a) :(b)) #define min(a, b) (((a)<(b)) ? (a) :(b)) //background and car const int class_num=2; /* * === Class ====================================================================== * Name: Detector * Description: FasterRCNN CXX Detector * ===================================================================================== */ class Detector { public: Detector(const string& model_file, const string& weights_file); void Detect(const string& im_name); void bbox_transform_inv(const int num, const float* box_deltas, const float* pred_cls, float* boxes, float* pred, int img_height, int img_width); void vis_detections(cv::Mat image, int* keep, int num_out, float* sorted_pred_cls, float CONF_THRESH); void boxes_sort(int num, const float* pred, float* sorted_pred); private: shared_ptr<Net<float> > net_; Detector(){} }; //Using for box sort struct Info { float score; const float* head; }; bool compare(const Info& Info1, const Info& Info2) { return Info1.score > Info2.score; } #endif
相應的cpp文件python2.7
#include <stdio.h> // for snprintf #include <string> #include <vector> #include <math.h> #include <fstream> #include <boost/python.hpp> #include "caffe/caffe.hpp" #include "gpu_nms.hpp" #include <opencv2/core/core.hpp> #include <opencv2/highgui/highgui.hpp> #include <opencv2/imgproc/imgproc.hpp> #include "faster_rcnn.hpp" using namespace caffe; using namespace std; /* * === FUNCTION ====================================================================== * Name: Detector * Description: Load the model file and weights file * ===================================================================================== */ //load modelfile and weights Detector::Detector(const string& model_file, const string& weights_file) { net_ = shared_ptr<Net<float> >(new Net<float>(model_file, caffe::TEST)); net_->CopyTrainedLayersFrom(weights_file); } /* * === FUNCTION ====================================================================== * Name: Detect * Description: Perform detection operation * Warning the max input size should less than 1000*600 * ===================================================================================== */ //perform detection operation //input image max size 1000*600 void Detector::Detect(const string& im_name) { float CONF_THRESH = 0.8; float NMS_THRESH = 0.3; const int max_input_side=1000; const int min_input_side=600; cv::Mat cv_img = cv::imread(im_name); cv::Mat cv_new(cv_img.rows, cv_img.cols, CV_32FC3, cv::Scalar(0,0,0)); if(cv_img.empty()) { std::cout<<"Can not get the image file !"<<endl; return ; } int max_side = max(cv_img.rows, cv_img.cols); int min_side = min(cv_img.rows, cv_img.cols); float max_side_scale = float(max_side) / float(max_input_side); float min_side_scale = float(min_side) /float( min_input_side); float max_scale=max(max_side_scale, min_side_scale); float img_scale = 1; if(max_scale > 1) { img_scale = float(1) / max_scale; } int height = int(cv_img.rows * img_scale); int width = int(cv_img.cols * img_scale); int num_out; cv::Mat cv_resized; std::cout<<"imagename "<<im_name<<endl; float im_info[3]; float data_buf[height*width*3]; float *boxes = NULL; float *pred = NULL; float *pred_per_class = NULL; float *sorted_pred_cls = NULL; int *keep = NULL; const float* bbox_delt; const float* rois; const float* pred_cls; int num; for (int h = 0; h < cv_img.rows; ++h ) { for (int w = 0; w < cv_img.cols; ++w) { cv_new.at<cv::Vec3f>(cv::Point(w, h))[0] = float(cv_img.at<cv::Vec3b>(cv::Point(w, h))[0])-float(102.9801); cv_new.at<cv::Vec3f>(cv::Point(w, h))[1] = float(cv_img.at<cv::Vec3b>(cv::Point(w, h))[1])-float(115.9465); cv_new.at<cv::Vec3f>(cv::Point(w, h))[2] = float(cv_img.at<cv::Vec3b>(cv::Point(w, h))[2])-float(122.7717); } } cv::resize(cv_new, cv_resized, cv::Size(width, height)); im_info[0] = cv_resized.rows; im_info[1] = cv_resized.cols; im_info[2] = img_scale; for (int h = 0; h < height; ++h ) { for (int w = 0; w < width; ++w) { data_buf[(0*height+h)*width+w] = float(cv_resized.at<cv::Vec3f>(cv::Point(w, h))[0]); data_buf[(1*height+h)*width+w] = float(cv_resized.at<cv::Vec3f>(cv::Point(w, h))[1]); data_buf[(2*height+h)*width+w] = float(cv_resized.at<cv::Vec3f>(cv::Point(w, h))[2]); } } net_->blob_by_name("data")->Reshape(1, 3, height, width); net_->blob_by_name("data")->set_cpu_data(data_buf); net_->blob_by_name("im_info")->set_cpu_data(im_info); net_->ForwardFrom(0); bbox_delt = net_->blob_by_name("bbox_pred")->cpu_data(); num = net_->blob_by_name("rois")->num(); rois = net_->blob_by_name("rois")->cpu_data(); pred_cls = net_->blob_by_name("cls_prob")->cpu_data(); boxes = new float[num*4]; pred = new float[num*5*class_num]; pred_per_class = new float[num*5]; sorted_pred_cls = new float[num*5]; keep = new int[num]; for (int n = 0; n < num; n++) { for (int c = 0; c < 4; c++) { boxes[n*4+c] = rois[n*5+c+1] / img_scale; } } bbox_transform_inv(num, bbox_delt, pred_cls, boxes, pred, cv_img.rows, cv_img.cols); for (int i = 1; i < class_num; i ++) { for (int j = 0; j< num; j++) { for (int k=0; k<5; k++) pred_per_class[j*5+k] = pred[(i*num+j)*5+k]; } boxes_sort(num, pred_per_class, sorted_pred_cls); _nms(keep, &num_out, sorted_pred_cls, num, 5, NMS_THRESH, 0); //for visualize only vis_detections(cv_img, keep, num_out, sorted_pred_cls, CONF_THRESH); } cv::imwrite("vis.jpg",cv_img); delete []boxes; delete []pred; delete []pred_per_class; delete []keep; delete []sorted_pred_cls; } /* * === FUNCTION ====================================================================== * Name: vis_detections * Description: Visuallize the detection result * ===================================================================================== */ void Detector::vis_detections(cv::Mat image, int* keep, int num_out, float* sorted_pred_cls, float CONF_THRESH) { int i=0; while(sorted_pred_cls[keep[i]*5+4]>CONF_THRESH && i < num_out) { if(i>=num_out) return; cv::rectangle(image,cv::Point(sorted_pred_cls[keep[i]*5+0], sorted_pred_cls[keep[i]*5+1]),cv::Point(sorted_pred_cls[keep[i]*5+2], sorted_pred_cls[keep[i]*5+3]),cv::Scalar(255,0,0)); i++; } } /* * === FUNCTION ====================================================================== * Name: boxes_sort * Description: Sort the bounding box according score * ===================================================================================== */ void Detector::boxes_sort(const int num, const float* pred, float* sorted_pred) { vector<Info> my; Info tmp; for (int i = 0; i< num; i++) { tmp.score = pred[i*5 + 4]; tmp.head = pred + i*5; my.push_back(tmp); } std::sort(my.begin(), my.end(), compare); for (int i=0; i<num; i++) { for (int j=0; j<5; j++) sorted_pred[i*5+j] = my[i].head[j]; } } /* * === FUNCTION ====================================================================== * Name: bbox_transform_inv * Description: Compute bounding box regression value * ===================================================================================== */ void Detector::bbox_transform_inv(int num, const float* box_deltas, const float* pred_cls, float* boxes, float* pred, int img_height, int img_width) { float width, height, ctr_x, ctr_y, dx, dy, dw, dh, pred_ctr_x, pred_ctr_y, pred_w, pred_h; for(int i=0; i< num; i++) { width = boxes[i*4+2] - boxes[i*4+0] + 1.0; height = boxes[i*4+3] - boxes[i*4+1] + 1.0; ctr_x = boxes[i*4+0] + 0.5 * width; ctr_y = boxes[i*4+1] + 0.5 * height; for (int j=0; j< class_num; j++) { dx = box_deltas[(i*class_num+j)*4+0]; dy = box_deltas[(i*class_num+j)*4+1]; dw = box_deltas[(i*class_num+j)*4+2]; dh = box_deltas[(i*class_num+j)*4+3]; pred_ctr_x = ctr_x + width*dx; pred_ctr_y = ctr_y + height*dy; pred_w = width * exp(dw); pred_h = height * exp(dh); pred[(j*num+i)*5+0] = max(min(pred_ctr_x - 0.5* pred_w, img_width -1), 0); pred[(j*num+i)*5+1] = max(min(pred_ctr_y - 0.5* pred_h, img_height -1), 0); pred[(j*num+i)*5+2] = max(min(pred_ctr_x + 0.5* pred_w, img_width -1), 0); pred[(j*num+i)*5+3] = max(min(pred_ctr_y + 0.5* pred_h, img_height -1), 0); pred[(j*num+i)*5+4] = pred_cls[i*class_num+j]; } } }