PyTorch(一)Basics

import torch 
import torchvision
import torch.nn as nn
import numpy as np
import torchvision.transforms as transforms


# ================================================================== #
#                         Table of Contents                          #
# ================================================================== #

# 1. Basic autograd example 1               (Line 25 to 39)
# 2. Basic autograd example 2               (Line 46 to 83)
# 3. Loading data from numpy                (Line 90 to 97)
# 4. Input pipline                          (Line 104 to 129)
# 5. Input pipline for custom dataset       (Line 136 to 156)
# 6. Pretrained model                       (Line 163 to 176)
# 7. Save and load model                    (Line 183 to 189) 


# ================================================================== #
#                     1. Basic autograd example 1                    #
# ================================================================== #

# Create tensors.
x = torch.tensor(1., requires_grad=True)
w = torch.tensor(2., requires_grad=True)
b = torch.tensor(3., requires_grad=True)

# Build a computational graph.
y = w * x + b    # y = 2 * x + 3

# Compute gradients.
y.backward()

# Print out the gradients.
print(x.grad)    # x.grad = 2 
print(w.grad)    # w.grad = 1 
print(b.grad)    # b.grad = 1 


# ================================================================== #
#                    2. Basic autograd example 2                     #
# ================================================================== #

# Create tensors of shape (10, 3) and (10, 2).
x = torch.randn(10, 3)
y = torch.randn(10, 2)

# Build a fully connected layer.
linear = nn.Linear(3, 2) # x*weight^T + bias <--> y
print('w: ', linear.weight) # (out_features, in_features)
print('b: ', linear.bias)   # out_features

# Build loss function and optimizer.
criterion = nn.MSELoss(reduction='elementwise_mean') # mean square error
optimizer = torch.optim.SGD(linear.parameters(), lr=0.01)

# Forward pass.
pred = linear(x)

# Compute loss.
loss = criterion(pred, y)
print('loss: ', loss.item())

# Backward pass.
loss.backward()

# Print out the gradients.
print('dL/dw: ', linear.weight.grad)
print('dL/db: ', linear.bias.grad)

# 1-step gradient descent(one forward and backward).
optimizer.step()

# You can also perform gradient descent at the low level.
# linear.weight.data.sub_(0.01 * linear.weight.grad.data)
# linear.bias.data.sub_(0.01 * linear.bias.grad.data)

# Print out the loss after 1-step gradient descent.
pred = linear(x)
loss = criterion(pred, y)
print('loss after 1 step optimization: ', loss.item())


# ================================================================== #
#                     3. Loading data from numpy                     #
# ================================================================== #

# Create a numpy array.
x = np.array([[1, 2], [3, 4]])

# Convert the numpy array to a torch tensor.
y = torch.from_numpy(x)

# Convert the torch tensor to a numpy array.
z = y.numpy()


# ================================================================== #
#                         4. Input pipline                           #
# ================================================================== #

# Download and construct CIFAR-10 dataset.
train_dataset = torchvision.datasets.CIFAR10(root='../../data/',
                                             train=True, 
                                             transform=transforms.ToTensor(),
                                             download=True)

# Fetch one data pair (read data from disk).
image, label = train_dataset[0]
print (image.size())
print (label)

# Data loader (this provides queues and threads in a very simple way).
train_loader = torch.utils.data.DataLoader(dataset = train_dataset,
                                           batch_size = 64,
                                           shuffle = True)

# When iteration starts, queue and thread start to load data from files.
data_iter = iter(train_loader)

# Mini-batch images and labels.
images, labels = data_iter.next()

# Actual usage of the data loader is as below.
for batch_idx, (image, labels) in enumerate(train_loader, 0):
    # Training code should be written here.
    pass


# ================================================================== #
#                5. Input pipline for custom dataset                 #
# ================================================================== #

# You should your build your custom dataset as below.
class CustomDataset(torch.utils.data.Dataset):
    def __init__(self):
        # TODO
        # 1. Initialize file paths or a list of file names.
        pass
        # xy = np.loadtxt('../../data/diabets.csv.gz')
        # self.len = xy.shape[0]
        # self.x_data = torch.from_numpy(xy[:, 0:-1])
        # self.y_data = torch.from_numpy(xy[:, [-1]])

    def __getitem__(self, index):
        # TODO
        # 1. Read one data from file (e.g. using numpy.fromfile, PIL.Image.open).
        # 2. Preprocess the data (e.g. torchvision.Transform).
        # 3. Return a data pair (e.g. image and label).
        pass
        # return self.x_data[index], self.y_data[index]

    def __len__(self):
        # You should change 0 to the total size of your dataset.
        return 0
        # return self.len

# You can then use the prebuilt data loader. 
custom_dataset = CustomDataset()
train_loader = torch.utils.data.DataLoader(dataset=custom_dataset,
                                           batch_size=32,
                                           shuffle=True)


# ================================================================== #
#                        6. Pretrained model                         #
# ================================================================== #

# Download and load the pretrained ResNet-18.
resnet = torchvision.models.resnet18(pretrained=True)

# If you want to finetune only the top layer of the model, set as below.
for param in resnet.parameters():
    param.requires_grad = False

# Replace the top layer for finetuning.
resnet.fc = nn.Linear(resnet.fc.in_features, 100)  # 100 is an example.

# Forward pass.
images = torch.randn(64, 3, 224, 224)
outputs = resnet(images)
print (outputs.size())     # (64, 100)


# ================================================================== #
#                      7. Save and load the model                    #
# ================================================================== #

# Save and load the entire model.
torch.save(resnet, 'model.ckpt')
model = torch.load('model.ckpt')

# Save and load only the model parameters (recommended).
torch.save(resnet.state_dict(), 'params.ckpt')
resnet.load_state_dict(torch.load('params.ckpt'))

 

import torch
import torch.nn as nn
import numpy as np
import matplotlib.pyplot as plt


# Hyper-parameters
input_size = 1
output_size = 1
num_epochs = 60
learning_rate = 0.001

# Toy dataset
x_train = np.array([[3.3], [4.4], [5.5], [6.71], [6.93], [4.168], 
                    [9.779], [6.182], [7.59], [2.167], [7.042], 
                    [10.791], [5.313], [7.997], [3.1]], dtype=np.float32)

y_train = np.array([[1.7], [2.76], [2.09], [3.19], [1.694], [1.573], 
                    [3.366], [2.596], [2.53], [1.221], [2.827], 
                    [3.465], [1.65], [2.904], [1.3]], dtype=np.float32)

# Linear regression model
model = nn.Linear(input_size, output_size)

# Loss and optimizer
criterion = nn.MSELoss()
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)  

# Train the model
for epoch in range(num_epochs):
    # Convert numpy arrays to torch tensors
    inputs = torch.from_numpy(x_train)
    targets = torch.from_numpy(y_train)

    # Forward pass
    outputs = model(inputs)
    loss = criterion(outputs, targets)
    
    # Backward and optimize
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()
    
    if (epoch+1) % 5 == 0:
        print ('Epoch [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, loss.item()))

# Plot the graph
predicted = model(torch.from_numpy(x_train)).detach().numpy()
plt.plot(x_train, y_train, 'ro', label='Original data')
plt.plot(x_train, predicted, label='Fitted line')
plt.legend()
plt.show()

# Save the model checkpoint
torch.save(model.state_dict(), 'model.ckpt')
import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms


# Hyper-parameters 
input_size = 784
num_classes = 10
num_epochs = 5
batch_size = 100
learning_rate = 0.001

# MNIST dataset (images and labels)
train_dataset = torchvision.datasets.MNIST(root='../../data', 
                                           train=True, 
                                           transform=transforms.ToTensor(),
                                           download=True)

test_dataset = torchvision.datasets.MNIST(root='../../data', 
                                          train=False, 
                                          transform=transforms.ToTensor())

# Data loader (input pipeline)
train_loader = torch.utils.data.DataLoader(dataset=train_dataset, 
                                           batch_size=batch_size, 
                                           shuffle=True)

test_loader = torch.utils.data.DataLoader(dataset=test_dataset, 
                                          batch_size=batch_size, 
                                          shuffle=False)

# Logistic regression model
model = nn.Linear(input_size, num_classes)

# Loss and optimizer
# nn.CrossEntropyLoss() computes softmax internally
criterion = nn.CrossEntropyLoss()  
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)  

# Train the model
total_step = len(train_loader)
for epoch in range(num_epochs):
    for i, (images, labels) in enumerate(train_loader):
        # Reshape images to (batch_size, input_size)
        images = images.reshape(-1, 28*28)
        
        # Forward pass
        outputs = model(images)
        loss = criterion(outputs, labels)
        
        # Backward and optimize
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        
        if (i+1) % 100 == 0:
            print ('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}' 
                   .format(epoch+1, num_epochs, i+1, total_step, loss.item()))

# Test the model
# In test phase, we don't need to compute gradients (for memory efficiency)
with torch.no_grad():
    correct = 0
    total = 0
    for images, labels in test_loader:
        images = images.reshape(-1, 28*28)
        outputs = model(images)
        _, predicted = torch.max(outputs.data, 1)
        total += labels.size(0)
        correct += (predicted == labels).sum()

    print('Accuracy of the model on the 10000 test images: {} %'.format(100 * correct / total))

# Save the model checkpoint
torch.save(model.state_dict(), 'model.ckpt')
import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms


# Device configuration
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

# Hyper-parameters 
input_size = 784
hidden_size = 500
num_classes = 10
num_epochs = 5
batch_size = 100
learning_rate = 0.001

# MNIST dataset 
train_dataset = torchvision.datasets.MNIST(root='../../data', 
                                           train=True, 
                                           transform=transforms.ToTensor(),  
                                           download=True)

test_dataset = torchvision.datasets.MNIST(root='../../data', 
                                          train=False, 
                                          transform=transforms.ToTensor())

# Data loader
train_loader = torch.utils.data.DataLoader(dataset=train_dataset, 
                                           batch_size=batch_size, 
                                           shuffle=True)

test_loader = torch.utils.data.DataLoader(dataset=test_dataset, 
                                          batch_size=batch_size, 
                                          shuffle=False)

# Fully connected neural network with one hidden layer
class NeuralNet(nn.Module):
    def __init__(self, input_size, hidden_size, num_classes):
        super(NeuralNet, self).__init__()
        self.fc1 = nn.Linear(input_size, hidden_size) 
        self.relu = nn.ReLU()
        self.fc2 = nn.Linear(hidden_size, num_classes)  
    
    def forward(self, x):
        out = self.fc1(x)
        out = self.relu(out)
        out = self.fc2(out)
        return out

model = NeuralNet(input_size, hidden_size, num_classes).to(device)

# Loss and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)  

# Train the model
total_step = len(train_loader)
for epoch in range(num_epochs):
    for i, (images, labels) in enumerate(train_loader):  
        # Move tensors to the configured device
        images = images.reshape(-1, 28*28).to(device)
        labels = labels.to(device)
        
        # Forward pass
        outputs = model(images)
        loss = criterion(outputs, labels)
        
        # Backward and optimize
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        
        if (i+1) % 100 == 0:
            print ('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}' 
                   .format(epoch+1, num_epochs, i+1, total_step, loss.item()))

# Test the model
# In test phase, we don't need to compute gradients (for memory efficiency)
with torch.no_grad():
    correct = 0
    total = 0
    for images, labels in test_loader:
        images = images.reshape(-1, 28*28).to(device)
        labels = labels.to(device)
        outputs = model(images)
        _, predicted = torch.max(outputs.data, 1)
        total += labels.size(0)
        correct += (predicted == labels).sum().item()

    print('Accuracy of the network on the 10000 test images: {} %'.format(100 * correct / total))

# Save the model checkpoint
torch.save(model.state_dict(), 'model.ckpt')
相關文章
相關標籤/搜索