LOJ#2087 國王飲水記

解:這個題一臉不可作...c++

比1小的怎麼辦啊,好像沒用,扔了吧。ide

先看部分分,n = 2簡單,我會分類討論!n = 4簡單,我會搜索!n = 10,我會剪枝!優化

k = 1怎麼辦,好像選的那些越大越好啊,那麼我就排序以後枚舉後綴!spa

k = INF怎麼辦啊,好像最優策略是從小到大一個一個連通啊,那直接模擬好了。code

寫一寫,有40分了。blog

別的怎麼辦啊,拿搜索找規律吧?因而發現一個規律(僞):最優策略必定是單獨選擇最後k - 1個,和前面的一個後綴。排序

因而枚舉後綴,而後模擬後面的部分,成功獲得了61分!ci

  1 #include <bits/stdc++.h>
  2 
  3 // ---------- decimal lib start ----------
  4 
  5 // ---------- decimal lib end ----------
  6 
  7 const int N = 8010;
  8 
  9 int n, k, p;
 10 Decimal a[N];
 11 
 12 inline void output(Decimal x) {
 13     std::cout << x.to_string(p + 5) << std::endl;
 14     return;
 15 }
 16 
 17 inline void output(double x) {
 18     printf("%.10f\n", x);
 19     return;
 20 }
 21 
 22 inline void out(int x) {
 23     for(int i = 0; i < n; i++) {
 24         printf("%d", (x >> i) & 1);
 25     }
 26     return;
 27 }
 28 
 29 namespace bf {
 30 
 31     const double eps = 1e-12;
 32 
 33     double ans = 0, a[N], temp[101][101];
 34     int lm, pw[110101], Ans[N], now[N];
 35 
 36     void DFS(int x) {
 37         /// check
 38         double large(0);
 39         for(int i = 1; i <= n; i++) {
 40             if(large < a[i]) large = a[i];
 41         }
 42         if(large < ans + eps) {
 43             return;
 44         }
 45         if(fabs(large - a[1]) < eps || x > k) {
 46             if(ans < a[1]) {
 47                 ans = a[1];
 48                 memcpy(Ans + 1, now + 1, x * sizeof(int));
 49             }
 50             return;
 51         }
 52 
 53         for(int i = 1; i <= n; i++) {
 54             temp[x - 1][i] = a[i];
 55         }
 56         for(int s = lm - 1; s > 1; s--) {
 57             if(!(s - (s & (-s)))) continue;
 58             double tot = 0;
 59             int cnt = 0;
 60             int t = s;
 61             while(t) {
 62                 int tt = pw[t & (-t)] + 1;
 63                 tot += a[tt];
 64                 cnt++;
 65                 t ^= 1 << (tt - 1);
 66             }
 67             tot /= cnt;
 68             t = s;
 69             while(t) {
 70                 int tt = pw[t & (-t)] + 1;
 71                 a[tt] = tot;
 72                 t ^= 1 << (tt - 1);
 73             }
 74             now[x] = s;
 75             DFS(x + 1);
 76             t = s;
 77             while(t) {
 78                 int tt = pw[t & (-t)] + 1;
 79                 a[tt] = temp[x - 1][tt];
 80                 t ^= 1 << (tt - 1);
 81             }
 82         }
 83         now[x] = 0;
 84         return;
 85     }
 86 
 87     inline void solve() {
 88 
 89         /// DFS
 90         lm = 1 << n;
 91         for(int i = 0; i < n; i++) {
 92             pw[1 << i] = i;
 93         }
 94         for(int i = 1; i <= n; i++) {
 95             a[i] = ::a[i].to_double();
 96         }
 97         DFS(1);
 98 
 99         output(ans);
100 
101         /*for(int i = 1; i <= k + 1; i++) {
102             out(Ans[i]); printf(" ");
103         }
104         puts("");*/
105         return;
106     }
107 }
108 
109 int main() {
110 
111     //freopen("in.in", "r", stdin);
112 
113     scanf("%d%d%d", &n, &k, &p);
114     for(int i = 1, x; i <= n; i++) {
115         scanf("%d", &x);
116         a[i] = x;
117     }
118 
119     std::sort(a + 2, a + n + 1);
120     if(n == 1) {
121         output(a[1]);
122         return 0;
123     }
124     if(n == 2) {
125         if(a[1] > a[2]) {
126             output(a[1]);
127         }
128         else {
129             a[1] = (a[1] + a[2]) / 2;
130             output(a[1]);
131         }
132         return 0;
133     }
134     if(a[1] >= a[n]) {
135         output(a[1]);
136         return 0;
137     }
138     if(k == 1) {
139         Decimal tot = a[1], ans = a[1];
140         int cnt = 1;
141         for(int i = n; i >= 2; i--) {
142             cnt++;
143             tot += a[i];
144             ans = std::max(ans, tot / cnt);
145         }
146         output(ans);
147         return 0;
148     }
149     if(k >= n - 1) {
150         for(int i = 2; i <= n; i++) {
151             if(a[1] > a[i]) continue;
152             a[1] = (a[1] + a[i]) / 2;
153         }
154         output(a[1]);
155         return 0;
156     }
157     if(n <= 10) {
158         bf::solve();
159         return 0;
160     }
161     else {
162         Decimal tot = a[1], ans = a[1];
163         int cnt = 1;
164         for(int i = n - k + 1; i >= 2; i--) {
165             cnt++;
166             tot += a[i];
167             ans = std::max(ans, tot / cnt);
168         }
169         a[1] = ans;
170         for(int i = n - k + 2; i <= n; i++) {
171             if(a[1] > a[i]) continue;
172             a[1] = (a[1] + a[i]) / 2;
173         }
174         output(a[1]);
175         return 0;
176     }
177     return 0;
178 }
61分代碼

正確的規律:最優策略必定是把一個後綴分紅連續若干段。
string

因而以此DP,設f[i][j]表示前i次操做取到了j,此時1號點的最大值。轉移就枚舉從哪來便可。注意初始化。it

  1 #include <bits/stdc++.h>
  2 
  3 // ---------- decimal lib start ----------
  4 
  5 const int PREC = 120;
  6 
  7 // ---------- decimal lib end ----------
  8 
  9 const int N = 8010;
 10 
 11 int n, k, p;
 12 Decimal a[N];
 13 
 14 inline void output(Decimal x) {
 15     std::cout << x.to_string(p + 5) << std::endl;
 16     return;
 17 }
 18 
 19 inline void output(double x) {
 20     printf("%.10f\n", x);
 21     return;
 22 }
 23 
 24 inline void out(int x) {
 25     for(int i = 0; i < n; i++) {
 26         printf("%d", (x >> i) & 1);
 27     }
 28     return;
 29 }
 30 
 31 namespace bf {
 32 
 33     const double eps = 1e-12;
 34 
 35     double ans = 0, a[N], temp[101][101];
 36     int lm, pw[110101], Ans[N], now[N];
 37 
 38     void DFS(int x) {
 39         /// check
 40         double large(0);
 41         for(int i = 1; i <= n; i++) {
 42             if(large < a[i]) large = a[i];
 43         }
 44         if(large < ans + eps) {
 45             return;
 46         }
 47         if(fabs(large - a[1]) < eps || x > k) {
 48             if(ans < a[1]) {
 49                 ans = a[1];
 50                 memcpy(Ans + 1, now + 1, x * sizeof(int));
 51             }
 52             return;
 53         }
 54 
 55         for(int i = 1; i <= n; i++) {
 56             temp[x - 1][i] = a[i];
 57         }
 58         for(int s = lm - 1; s > 1; s--) {
 59             if(!(s - (s & (-s)))) continue;
 60             double tot = 0;
 61             int cnt = 0;
 62             int t = s;
 63             while(t) {
 64                 int tt = pw[t & (-t)] + 1;
 65                 tot += a[tt];
 66                 cnt++;
 67                 t ^= 1 << (tt - 1);
 68             }
 69             tot /= cnt;
 70             t = s;
 71             while(t) {
 72                 int tt = pw[t & (-t)] + 1;
 73                 a[tt] = tot;
 74                 t ^= 1 << (tt - 1);
 75             }
 76             now[x] = s;
 77             DFS(x + 1);
 78             t = s;
 79             while(t) {
 80                 int tt = pw[t & (-t)] + 1;
 81                 a[tt] = temp[x - 1][tt];
 82                 t ^= 1 << (tt - 1);
 83             }
 84         }
 85         now[x] = 0;
 86         return;
 87     }
 88 
 89     inline void solve() {
 90 
 91         /// DFS
 92         lm = 1 << n;
 93         for(int i = 0; i < n; i++) {
 94             pw[1 << i] = i;
 95         }
 96         for(int i = 1; i <= n; i++) {
 97             a[i] = ::a[i].to_double();
 98         }
 99         DFS(1);
100 
101         output(ans);
102 
103         /*for(int i = 1; i <= k + 1; i++) {
104             out(Ans[i]); printf(" ");
105         }
106         puts("");*/
107         return;
108     }
109 }
110 
111 Decimal f[105][105];
112 int sum[N];
113 
114 inline void solve() {
115     int I = 2;
116     while(a[1] > a[I]) ++I;
117     for(int i = 1; i <= n; i++) {
118         f[0][i] = a[1];
119     }
120     for(int i = 1; i <= k; i++) {
121         f[i][I - 1] = a[1];
122         for(int j = I; j <= n; j++) {
123             /// f[i][j]
124             f[i][j] = f[i - 1][j];
125             for(int p = I - 1; p < j; p++) {
126                 Decimal t = (f[i - 1][p] + sum[j] - sum[p]) / (j - p + 1);
127                 if(f[i][j] < t) {
128                     f[i][j] = t;
129                 }
130             }
131             //printf("i = %d j = %d f = ", i, j); output(f[i][j]);
132         }
133     }
134     output(f[k][n]);
135     return;
136 }
137 
138 int main() {
139 
140     //freopen("in.in", "r", stdin);
141     //printf("%d \n", (sizeof(f)) / 1048576);
142 
143     scanf("%d%d%d", &n, &k, &p);
144     for(int i = 1, x; i <= n; i++) {
145         scanf("%d", &x);
146         a[i] = x;
147     }
148 
149     std::sort(a + 2, a + n + 1);
150     for(int i = 1; i <= n; i++) {
151         sum[i] = sum[i - 1] + (int)(a[i].to_double() + 0.5);
152     }
153     if(n == 1) {
154         output(a[1]);
155         return 0;
156     }
157     if(n == 2) {
158         if(a[1] > a[2]) {
159             output(a[1]);
160         }
161         else {
162             a[1] = (a[1] + a[2]) / 2;
163             output(a[1]);
164         }
165         return 0;
166     }
167     if(a[1] >= a[n]) {
168         output(a[1]);
169         return 0;
170     }
171     if(k == 1) {
172         Decimal tot = a[1], ans = a[1];
173         int cnt = 1;
174         for(int i = n; i >= 2; i--) {
175             cnt++;
176             tot += a[i];
177             ans = std::max(ans, tot / cnt);
178         }
179         output(ans);
180         return 0;
181     }
182     if(k >= n - 1) {
183         for(int i = 2; i <= n; i++) {
184             if(a[1] > a[i]) continue;
185             a[1] = (a[1] + a[i]) / 2;
186         }
187         output(a[1]);
188         return 0;
189     }
190     if(n <= 4) {
191         bf::solve();
192         return 0;
193     }
194     else {
195         solve();
196         return 0;
197     }
198     return 0;
199 }
60分代碼

考慮如何優化這個DP。

相關文章
相關標籤/搜索