深度學習中,數據集的預處理每每是很基礎的一步,不少場景都須要將一張大圖進行切割。本篇提供一種重疊矩形框的生成方法,數據集中的圖像尺寸能夠不一樣,根據生成的重疊矩形框能夠crop出相應的圖像區域。主要難點在於函數不假設圖像的尺寸大小。python
如下是重疊矩形框的生成函數,是根據右下角的座標來肯定左上角的座標,若是右下角的點超過了圖像邊緣,則讓矩形的右下角等於邊緣值。循環會讓右下角的座標往右和往下多走一個stride,這樣能夠將邊緣部分的圖像也包含進來。windows
#encoding=utf-8 def get_fixed_windows(image_size, wind_size, overlap_size): ''' This function can generate overlapped windows given various image size params: image_size (w, h): the image width and height wind_size (w, h): the window width and height overlap (overlap_w, overlap_h): the overlap size contains x-axis and y-axis return: rects [(xmin, ymin, xmax, ymax)]: the windows in a list of rectangles ''' rects = set() assert overlap_size[0] < wind_size[0] assert overlap_size[1] < wind_size[1] im_w = wind_size[0] if image_size[0] < wind_size[0] else image_size[0] im_h = wind_size[1] if image_size[1] < wind_size[1] else image_size[1] stride_w = wind_size[0] - overlap_size[0] stride_h = wind_size[1] - overlap_size[1] for j in range(wind_size[1]-1, im_h + stride_h, stride_h): for i in range(wind_size[0]-1, im_w + stride_w, stride_w): right, down = i+1, j+1 right = right if right < im_w else im_w down = down if down < im_h else im_h left = right - wind_size[0] up = down - wind_size[1] rects.add((left, up, right, down)) return list(rects) if __name__ == "__main__": image_size = (1780, 532) wind_size = (800, 600) overlap_size = (300, 200) rets = get_fixed_windows(image_size, wind_size, overlap_size) for rect in rets: print(rect) ''' # output (0, 0, 800, 600) (500, 0, 1300, 600) (980, 0, 1780, 600) '''
實在不知道寫什麼了,把以前項目裏的一個圖像預處理代碼po出來。嗯🤔,仍是要堅持定時寫點東西。app