FFmpeg + OpenGLES 實現視頻解碼播放和視頻濾鏡

該原創文章首發於微信公衆號:字節流動java

FFmpeg 開發系列連載:c++

FFmpeg 開發(01):FFmpeg 編譯和集成緩存

FFmpeg 開發(02):FFmpeg + ANativeWindow 實現視頻解碼播放微信

FFmpeg 開發(03):FFmpeg + OpenSLES 實現音頻解碼播放多線程

FFmpeg 開發(04):FFmpeg + OpenGLES 實現音頻可視化播放ide

前面 Android FFmpeg 開發系列文章中,咱們已經利用 FFmpeg 的解碼功能和 ANativeWindow 的渲染功能,實現了的視頻的解碼播放。可是,當你想爲播放器作一些視頻濾鏡時,如加水印、旋轉縮放等效果,使用 OpenGL ES 實現起來就極爲方便。函數

視頻解碼播放和視頻濾鏡

OpenGLES 渲染解碼幀

通過上面幾節的介紹,咱們對音視頻的解碼過程已經比較熟悉了。本文要用 OpenGL 實現視頻的渲染,這裏再回顧下視頻的解碼流程:性能

視頻的解碼流程

從流程圖中能夠看出,解碼一幀圖像後,首先將對圖像進行格式轉換,轉換成 RGBA 格式,使用 OpenGL 或 ANativeWindow 能夠直接進行渲染。學習

固然,使用 OpenGL 進行渲染時,爲了提高性能,能夠將格式轉換放到 GPU 上來作(即 shader 實現 YUV 到 RGB 的轉換),也可使用 OES 紋理直接接收 YUV 圖像數據,這裏就不進行展開講了。ui

瞭解視頻解碼到渲染的流程以後,咱們就能夠構建 OpenGL 渲染環境。從以前介紹 EGL 的文章中,咱們知道在使用 OpenGL API 以前,必需要先利用 EGL 建立好 OpenGL 的渲染上下文環境。至於 EGL 怎麼使用,能夠參考文章OpenGLES 與 EGL 的關係

因爲本文是面向初學者快速上手 FFmpeg 開發,咱們直接利用 Android GLSurfaceView 類建立 OpenGL 渲染環境,GLSurfaceView 類已經封裝了 EGL 建立渲染上下文的操做,並啓動了一個獨立的渲染線程,徹底符合咱們渲染視頻解碼幀的需求。

實際上,GLSurfaceView 類在生產開發中能夠知足絕大多數的屏幕渲染場景,通常要實現多線程渲染的時候才須要咱們單獨操做 EGL 的接口。

那麼,你確定會有疑問:GLSurfaceView 是 Java 的類,難道要將 Native 層解碼後的視頻圖像傳到 Java 層再進行渲染嗎?大可沒必要,咱們只須要將 Java 層的調用棧經過 JNI 延伸到 Native 層便可。

GLSurfaceView 類 Renderer 接口對應渲染的三個關鍵函數,咱們經過 JNI 延伸到 Native 層:

@Override
    public void onSurfaceCreated(GL10 gl10, EGLConfig eglConfig) {
        FFMediaPlayer.native_OnSurfaceCreated();
    }

    @Override
    public void onSurfaceChanged(GL10 gl10, int w, int h) {
        FFMediaPlayer.native_OnSurfaceChanged(w, h);
    }

    @Override
    public void onDrawFrame(GL10 gl10) {
        FFMediaPlayer.native_OnDrawFrame();
    }

    //for video openGL render
    public static native void native_OnSurfaceCreated();
    public static native void native_OnSurfaceChanged(int width, int height);
    public static native void native_OnDrawFrame();

而後,咱們在 Native 層建立一個 OpenGLRender 類來用來管理 OpenGL 的渲染。

//接口
class VideoRender {
public:
    virtual ~VideoRender(){}
    virtual void Init(int videoWidth, int videoHeight, int *dstSize) = 0;
    virtual void RenderVideoFrame(NativeImage *pImage) = 0;
    virtual void UnInit() = 0;
};

//OpenGLRender 類定義
class OpenGLRender: public VideoRender{
public:
    virtual void Init(int videoWidth, int videoHeight, int *dstSize);
    virtual void RenderVideoFrame(NativeImage *pImage);
    virtual void UnInit();

	//對應 Java 層 GLSurfaceView.Renderer 的三個接口
    void OnSurfaceCreated();
    void OnSurfaceChanged(int w, int h);
    void OnDrawFrame();
	
	//靜態實例管理
    static OpenGLRender *GetInstance();
    static void ReleaseInstance();
	
	//設置變換矩陣,控制圖像的旋轉縮放
    void UpdateMVPMatrix(int angleX, int angleY, float scaleX, float scaleY);

private:
    OpenGLRender();
    virtual ~OpenGLRender();

    static std::mutex m_Mutex;
    static OpenGLRender* s_Instance;
    GLuint m_ProgramObj = GL_NONE;
    GLuint m_TextureId;
    GLuint m_VaoId;
    GLuint m_VboIds[3];
    NativeImage m_RenderImage;
    glm::mat4 m_MVPMatrix;//變換矩陣
};

OpenGLRender 類的完整實現。

#include "OpenGLRender.h"
#include <GLUtils.h>
#include <gtc/matrix_transform.hpp>

OpenGLRender* OpenGLRender::s_Instance = nullptr;
std::mutex OpenGLRender::m_Mutex;

static char vShaderStr[] =
        "#version 300 es\n"
        "layout(location = 0) in vec4 a_position;\n"
        "layout(location = 1) in vec2 a_texCoord;\n"
        "uniform mat4 u_MVPMatrix;\n"
        "out vec2 v_texCoord;\n"
        "void main()\n"
        "{\n"
        "    gl_Position = u_MVPMatrix * a_position;\n"
        "    v_texCoord = a_texCoord;\n"
        "}";

static char fShaderStr[] =
        "#version 300 es\n"
        "precision highp float;\n"
        "in vec2 v_texCoord;\n"
        "layout(location = 0) out vec4 outColor;\n"
        "uniform sampler2D s_TextureMap;//採樣器\n"
        "void main()\n"
        "{\n"
        "    outColor = texture(s_TextureMap, v_texCoord);\n"
        "}";

GLfloat verticesCoords[] = {
        -1.0f,  1.0f, 0.0f,  // Position 0
        -1.0f, -1.0f, 0.0f,  // Position 1
        1.0f,  -1.0f, 0.0f,  // Position 2
        1.0f,   1.0f, 0.0f,  // Position 3
};

GLfloat textureCoords[] = {
        0.0f,  0.0f,        // TexCoord 0
        0.0f,  1.0f,        // TexCoord 1
        1.0f,  1.0f,        // TexCoord 2
        1.0f,  0.0f         // TexCoord 3
};

GLushort indices[] = { 0, 1, 2, 0, 2, 3 };

OpenGLRender::OpenGLRender() {

}

OpenGLRender::~OpenGLRender() {
	// 釋放緩存圖像
    NativeImageUtil::FreeNativeImage(&m_RenderImage);

}

//初始化視頻圖像的寬和高
void OpenGLRender::Init(int videoWidth, int videoHeight, int *dstSize) {
    LOGCATE("OpenGLRender::InitRender video[w, h]=[%d, %d]", videoWidth, videoHeight);
    std::unique_lock<std::mutex> lock(m_Mutex);
    m_RenderImage.format = IMAGE_FORMAT_RGBA;
    m_RenderImage.width = videoWidth;
    m_RenderImage.height = videoHeight;
    dstSize[0] = videoWidth;
    dstSize[1] = videoHeight;
    m_FrameIndex = 0;

}

// 接收解碼後的視頻幀
void OpenGLRender::RenderVideoFrame(NativeImage *pImage) {
    LOGCATE("OpenGLRender::RenderVideoFrame pImage=%p", pImage);
    if(pImage == nullptr || pImage->ppPlane[0] == nullptr)
        return;
	//加互斥鎖,解碼線程和渲染線程是 2 個不一樣的線程,避免數據訪問衝突
    std::unique_lock<std::mutex> lock(m_Mutex);
    if(m_RenderImage.ppPlane[0] == nullptr)
    {
        NativeImageUtil::AllocNativeImage(&m_RenderImage);
    }

    NativeImageUtil::CopyNativeImage(pImage, &m_RenderImage);
}

void OpenGLRender::UnInit() {

}

// 設置變換矩陣,控制圖像的旋轉縮放
void OpenGLRender::UpdateMVPMatrix(int angleX, int angleY, float scaleX, float scaleY)
{
    angleX = angleX % 360;
    angleY = angleY % 360;

    //轉化爲弧度角
    float radiansX = static_cast<float>(MATH_PI / 180.0f * angleX);
    float radiansY = static_cast<float>(MATH_PI / 180.0f * angleY);
    // Projection matrix
    glm::mat4 Projection = glm::ortho(-1.0f, 1.0f, -1.0f, 1.0f, 0.1f, 100.0f);
    //glm::mat4 Projection = glm::frustum(-ratio, ratio, -1.0f, 1.0f, 4.0f, 100.0f);
    //glm::mat4 Projection = glm::perspective(45.0f,ratio, 0.1f,100.f);

    // View matrix
    glm::mat4 View = glm::lookAt(
            glm::vec3(0, 0, 4), // Camera is at (0,0,1), in World Space
            glm::vec3(0, 0, 0), // and looks at the origin
            glm::vec3(0, 1, 0)  // Head is up (set to 0,-1,0 to look upside-down)
    );

    // Model matrix
    glm::mat4 Model = glm::mat4(1.0f);
    Model = glm::scale(Model, glm::vec3(scaleX, scaleY, 1.0f));
    Model = glm::rotate(Model, radiansX, glm::vec3(1.0f, 0.0f, 0.0f));
    Model = glm::rotate(Model, radiansY, glm::vec3(0.0f, 1.0f, 0.0f));
    Model = glm::translate(Model, glm::vec3(0.0f, 0.0f, 0.0f));

    m_MVPMatrix = Projection * View * Model;

}

void OpenGLRender::OnSurfaceCreated() {
    LOGCATE("OpenGLRender::OnSurfaceCreated");

    m_ProgramObj = GLUtils::CreateProgram(vShaderStr, fShaderStr);
    if (!m_ProgramObj)
    {
        LOGCATE("OpenGLRender::OnSurfaceCreated create program fail");
        return;
    }

    glGenTextures(1, &m_TextureId);
    glBindTexture(GL_TEXTURE_2D, m_TextureId);
    glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
    glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
    glBindTexture(GL_TEXTURE_2D, GL_NONE);

    // Generate VBO Ids and load the VBOs with data
    glGenBuffers(3, m_VboIds);
    glBindBuffer(GL_ARRAY_BUFFER, m_VboIds[0]);
    glBufferData(GL_ARRAY_BUFFER, sizeof(verticesCoords), verticesCoords, GL_STATIC_DRAW);

    glBindBuffer(GL_ARRAY_BUFFER, m_VboIds[1]);
    glBufferData(GL_ARRAY_BUFFER, sizeof(textureCoords), textureCoords, GL_STATIC_DRAW);

    glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, m_VboIds[2]);
    glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(indices), indices, GL_STATIC_DRAW);

    // Generate VAO Id
    glGenVertexArrays(1, &m_VaoId);
    glBindVertexArray(m_VaoId);

    glBindBuffer(GL_ARRAY_BUFFER, m_VboIds[0]);
    glEnableVertexAttribArray(0);
    glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 3 * sizeof(GLfloat), (const void *)0);
    glBindBuffer(GL_ARRAY_BUFFER, GL_NONE);

    glBindBuffer(GL_ARRAY_BUFFER, m_VboIds[1]);
    glEnableVertexAttribArray(1);
    glVertexAttribPointer(1, 2, GL_FLOAT, GL_FALSE, 2 * sizeof(GLfloat), (const void *)0);
    glBindBuffer(GL_ARRAY_BUFFER, GL_NONE);

    glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, m_VboIds[2]);

    glBindVertexArray(GL_NONE);

    UpdateMVPMatrix(0, 0, 1.0f, 1.0f);
}

void OpenGLRender::OnSurfaceChanged(int w, int h) {
    LOGCATE("OpenGLRender::OnSurfaceChanged [w, h]=[%d, %d]", w, h);
    m_ScreenSize.x = w;
    m_ScreenSize.y = h;
    glViewport(0, 0, w, h);
    glClearColor(1.0f, 1.0f, 1.0f, 1.0f);
}

void OpenGLRender::OnDrawFrame() {
    glClear(GL_COLOR_BUFFER_BIT);
    if(m_ProgramObj == GL_NONE || m_TextureId == GL_NONE || m_RenderImage.ppPlane[0] == nullptr) return;
    LOGCATE("OpenGLRender::OnDrawFrame [w, h]=[%d, %d]", m_RenderImage.width, m_RenderImage.height);
    m_FrameIndex++;

    //upload RGBA image data
    glActiveTexture(GL_TEXTURE0);
    glBindTexture(GL_TEXTURE_2D, m_TextureId);

	//加互斥鎖,解碼線程和渲染線程是 2 個不一樣的線程,避免數據訪問衝突
    std::unique_lock<std::mutex> lock(m_Mutex);
    glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, m_RenderImage.width, m_RenderImage.height, 0, GL_RGBA, GL_UNSIGNED_BYTE, m_RenderImage.ppPlane[0]);
    lock.unlock();

    glBindTexture(GL_TEXTURE_2D, GL_NONE);

    // Use the program object
    glUseProgram (m_ProgramObj);

    glBindVertexArray(m_VaoId);

    GLUtils::setMat4(m_ProgramObj, "u_MVPMatrix", m_MVPMatrix);

    // Bind the RGBA map
    glActiveTexture(GL_TEXTURE0);
    glBindTexture(GL_TEXTURE_2D, m_TextureId);
    GLUtils::setFloat(m_ProgramObj, "s_TextureMap", 0);

    glDrawElements(GL_TRIANGLES, 6, GL_UNSIGNED_SHORT, (const void *)0);

}

// 單例模式,全局只有一個 OpenGLRender
OpenGLRender *OpenGLRender::GetInstance() {
    if(s_Instance == nullptr)
    {
        std::lock_guard<std::mutex> lock(m_Mutex);
        if(s_Instance == nullptr)
        {
            s_Instance = new OpenGLRender();
        }

    }
    return s_Instance;
}

// 釋放靜態實例
void OpenGLRender::ReleaseInstance() {
    if(s_Instance != nullptr)
    {
        std::lock_guard<std::mutex> lock(m_Mutex);
        if(s_Instance != nullptr)
        {
            delete s_Instance;
            s_Instance = nullptr;
        }

    }
}

OpenGLRender 在 JNI 層的調用。

JNIEXPORT void JNICALL
Java_com_byteflow_learnffmpeg_media_FFMediaPlayer_native_1OnSurfaceCreated(JNIEnv *env,
                                                                           jclass clazz) {
    OpenGLRender::GetInstance()->OnSurfaceCreated();
}

JNIEXPORT void JNICALL
Java_com_byteflow_learnffmpeg_media_FFMediaPlayer_native_1OnSurfaceChanged(JNIEnv *env,
                                                                           jclass clazz, jint width,
                                                                           jint height) {
    OpenGLRender::GetInstance()->OnSurfaceChanged(width, height);
}

JNIEXPORT void JNICALL
Java_com_byteflow_learnffmpeg_media_FFMediaPlayer_native_1OnDrawFrame(JNIEnv *env, jclass clazz) {
    OpenGLRender::GetInstance()->OnDrawFrame();
}

渲染效果

添加簡單的視頻濾鏡

這裏又回到了 OpenGL ES 開發領域,對這一塊感興趣的同窗能夠參考這篇Android OpenGL ES 從入門到精通系統性學習教程

利用 OpenGL 實現好視頻的渲染以後,能夠很方便地利用 shader 添加你想要的視頻濾鏡,這裏咱們直接能夠參考相機濾鏡的實現。

黑白濾鏡

咱們將輸出視頻幀的一半渲染成經典黑白風格的圖像,實現的 shader 以下:

//黑白濾鏡
#version 300 es
precision highp float;
in vec2 v_texCoord;
layout(location = 0) out vec4 outColor;
uniform sampler2D s_TextureMap;//採樣器
void main()
{
    outColor = texture(s_TextureMap, v_texCoord);
    if(v_texCoord.x > 0.5) //將輸出視頻幀的一半渲染成經典黑白風格的圖像
        outColor = vec4(vec3(outColor.r*0.299 + outColor.g*0.587 + outColor.b*0.114), outColor.a);
}

黑白濾鏡的呈現效果:

黑白濾鏡

動態網格

動態網格濾鏡是將視頻圖像分紅規則的網格,動態修改網格的邊框寬度,實現的 shader 以下:

//dynimic mesh 動態網格
#version 300 es
precision highp float;
in vec2 v_texCoord;
layout(location = 0) out vec4 outColor;
uniform sampler2D s_TextureMap;//採樣器
uniform float u_Offset;
uniform vec2 u_TexSize;
void main()
{
    vec2 imgTexCoord = v_texCoord * u_TexSize;
    float sideLength = u_TexSize.y / 6.0;
    float maxOffset = 0.15 * sideLength;
    float x = mod(imgTexCoord.x, floor(sideLength));
    float y = mod(imgTexCoord.y, floor(sideLength));

    float offset = u_Offset * maxOffset;

    if(offset <= x
    && x <= sideLength - offset
    && offset <= y
    && y <= sideLength - offset)
    {
        outColor = texture(s_TextureMap, v_texCoord);
    }
    else
    {
        outColor = vec4(1.0, 1.0, 1.0, 1.0);
    }
}

動態網格濾鏡的渲染過程:

glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, m_TextureId);

std::unique_lock<std::mutex> lock(m_Mutex);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, m_RenderImage.width, m_RenderImage.height, 0, GL_RGBA, GL_UNSIGNED_BYTE, m_RenderImage.ppPlane[0]);
lock.unlock();

glBindTexture(GL_TEXTURE_2D, GL_NONE);

//指定着色器程序
glUseProgram (m_ProgramObj);

//綁定 VAO
glBindVertexArray(m_VaoId);

//傳入變換矩陣
GLUtils::setMat4(m_ProgramObj, "u_MVPMatrix", m_MVPMatrix);

//綁定紋理
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, m_TextureId);
GLUtils::setFloat(m_ProgramObj, "s_TextureMap", 0);

//設置偏移量
float offset = (sin(m_FrameIndex * MATH_PI / 25) + 1.0f) / 2.0f;
GLUtils::setFloat(m_ProgramObj, "u_Offset", offset);

//設置圖像尺寸
GLUtils::setVec2(m_ProgramObj, "u_TexSize", vec2(m_RenderImage.width, m_RenderImage.height));

glDrawElements(GL_TRIANGLES, 6, GL_UNSIGNED_SHORT, (const void *)0);

動態網格濾鏡的呈現效果:

動態網格濾鏡

縮放和旋轉

咱們在 GLSurfaceView 監聽用戶的滑動和縮放手勢,控制 OpenGLRender 的變換矩陣,從而實現視頻圖像的旋轉和縮放。

視頻圖像的旋轉和縮放

聯繫與交流

技術交流/獲取源碼能夠添加個人微信:Byte-Flow

聯繫我

相關文章
相關標籤/搜索