語法express
join_table:緩存
table_reference JOIN table_factor [join_condition]spa
| table_reference {LEFT|RIGHT|FULL} [OUTER] JOIN table_reference join_condition內存
| table_reference LEFT SEMI JOIN table_reference join_conditionget
table_reference:it
table_factorio
| join_tabletable
table_factor:file
tbl_name [alias]序列化
| table_subquery alias
| ( table_references )
join_condition:
ON equality_expression ( AND equality_expression )*
equality_expression:
expression = expression
Hive 只支持等值鏈接(equality joins)、外鏈接(outer joins)和(left/right joins)。Hive 不支持全部非等值的鏈接,由於非等值鏈接很是難轉化到 map/reduce 任務。另外,Hive 支持多於 2 個表的鏈接。
寫 join 查詢時,須要注意幾個關鍵點:
一、只支持等值join
例如:
SELECT a.* FROM a JOIN b ON (a.id = b.id)
SELECT a.* FROM a JOIN b
ON (a.id = b.id AND a.department = b.department)
是正確的,然而:
SELECT a.* FROM a JOIN b ON (a.id b.id)
是錯誤的。
例如
SELECT a.val, b.val, c.val FROM a JOIN b
ON (a.key = b.key1) JOIN c ON (c.key = b.key2)
若是join中多個表的 join key 是同一個,則 join 會被轉化爲單個 map/reduce 任務,例如:
SELECT a.val, b.val, c.val FROM a JOIN b
ON (a.key = b.key1) JOIN c
ON (c.key = b.key1)
被轉化爲單個 map/reduce 任務,由於 join 中只使用了 b.key1 做爲 join key。
SELECT a.val, b.val, c.val FROM a JOIN b ON (a.key = b.key1)
JOIN c ON (c.key = b.key2)
而這一 join 被轉化爲 2 個 map/reduce 任務。由於 b.key1 用於第一次 join 條件,而 b.key2 用於第二次 join。
3.join 時,每次 map/reduce 任務的邏輯:
reducer 會緩存 join 序列中除了最後一個表的全部表的記錄,再經過最後一個表將結果序列化到文件系統。這一實現有助於在 reduce 端減小內存的使用量。實踐中,應該把最大的那個表寫在最後(不然會由於緩存浪費大量內存)。例如:
SELECT a.val, b.val, c.val FROM a
JOIN b ON (a.key = b.key1) JOIN c ON (c.key = b.key1)
全部表都使用同一個 join key(使用 1 次 map/reduce 任務計算)。Reduce 端會緩存 a 表和 b 表的記錄,而後每次取得一個 c 表的記錄就計算一次 join 結果,相似的還有:
SELECT a.val, b.val, c.val FROM a
JOIN b ON (a.key = b.key1) JOIN c ON (c.key = b.key2)
這裏用了 2 次 map/reduce 任務。第一次緩存 a 表,用 b 表序列化;第二次緩存第一次 map/reduce 任務的結果,而後用 c 表序列化。
4.LEFT,RIGHT 和 FULL OUTER 關鍵字用於處理 join 中空記錄的狀況。
例如:
SELECT a.val, b.val FROM a LEFT OUTER
JOIN b ON (a.key=b.key)
對應全部 a 表中的記錄都有一條記錄輸出。輸出的結果應該是 a.val, b.val,當 a.key=b.key 時,而當 b.key 中找不到等值的 a.key 記錄時也會輸出 a.val, NULL。「FROM a LEFT OUTER JOIN b」這句必定要寫在同一行——意思是 a 表在 b 表的左邊,因此 a 表中的全部記錄都被保留了;「a RIGHT OUTER JOIN b」會保留全部 b 表的記錄。OUTER JOIN 語義應該是遵循標準 SQL spec的。
Join 發生在 WHERE 子句以前。若是你想限制 join 的輸出,應該在 WHERE 子句中寫過濾條件——或是在 join 子句中寫。這裏面一個容易混淆的問題是表分區的狀況:
SELECT a.val, b.val FROM a
LEFT OUTER JOIN b ON (a.key=b.key)
WHERE a.ds='2009-07-07' AND b.ds='2009-07-07'
會 join a 表到 b 表(OUTER JOIN),列出 a.val 和 b.val 的記錄。WHERE 從句中可使用其餘列做爲過濾條件。可是,如前所述,若是 b 表中找不到對應 a 表的記錄,b 表的全部列都會列出 NULL,包括 ds 列。也就是說,join 會過濾 b 表中不能找到匹配 a 表 join key 的全部記錄。這樣的話,LEFT OUTER 就使得查詢結果與 WHERE 子句無關了。解決的辦法是在 OUTER JOIN 時使用如下語法:
SELECT a.val, b.val FROM a LEFT OUTER JOIN b
ON (a.key=b.key AND
b.ds='2009-07-07' AND
a.ds='2009-07-07')
這一查詢的結果是預先在 join 階段過濾過的,因此不會存在上述問題。這一邏輯也能夠應用於 RIGHT 和 FULL 類型的 join 中。
Join 是不能交換位置的。不管是 LEFT 仍是 RIGHT join,都是左鏈接的。
SELECT a.val1, a.val2, b.val, c.val
FROM a
JOIN b ON (a.key = b.key)
LEFT OUTER JOIN c ON (a.key = c.key)
先 join a 表到 b 表,丟棄掉全部 join key 中不匹配的記錄,而後用這一中間結果和 c 表作 join。這一表述有一個不太明顯的問題,就是當一個 key 在 a 表和 c 表都存在,可是 b 表中不存在的時候:整個記錄在第一次 join,即 a JOIN b 的時候都被丟掉了(包括a.val1,a.val2和a.key),而後咱們再和 c 表 join 的時候,若是 c.key 與 a.key 或 b.key 相等,就會獲得這樣的結果:NULL, NULL, NULL, c.val。
5.LEFT SEMI JOIN 是 IN/EXISTS 子查詢的一種更高效的實現。Hive 當前沒有實現 IN/EXISTS 子查詢,因此你能夠用 LEFT SEMI JOIN 重寫你的子查詢語句。LEFT SEMI JOIN 的限制是, JOIN 子句中右邊的表只能在 ON 子句中設置過濾條件,在 WHERE 子句、SELECT 子句或其餘地方過濾都不行。
SELECT a.key, a.value
FROM a
WHERE a.key in
(SELECT b.key
FROM B);
能夠被重寫爲:
SELECT a.key, a.val
FROM a LEFT SEMI JOIN b on (a.key = b.key)