JavaShuo
欄目
標籤
Learning Rich Features at High-Speed for Single-Shot Object Detection
時間 2020-12-30
標籤
論文閱讀
#目標檢測
简体版
原文
原文鏈接
Learning Rich Features at High-Speed for Single-Shot Object Detection abstract 單級目標檢測方法因其具有實時性強、檢測精度高等特點,近年來受到廣泛關注。通常,大多數現有的單級檢測器遵循兩個常見的實踐:它們使用在ImageNet上預先訓練的網絡主幹來完成分類任務,並使用自頂向下的特徵金字塔表示來處理規模變化。作者研究了
>>阅读原文<<
相關文章
1.
《Learning Rich Features at High-Speed for Single-Shot Object Detection》筆記
2.
【論文筆記】:Learning Rich Features at High-Speed for Single-Shot Object Detection
3.
Learning Rich Features at High-Speed for Single-Shot Object Detection 論文筆記
4.
Learning Region Features for Object Detection
5.
Learning Rich Features from RGB-D Images for Object Detection and Segmentation(ECCV2014)
6.
論文筆記:Learning Region Features for Object Detection
7.
Learning Rich Features for Image Manipulation Detection(CVPR 2018 圖像篡改檢測)
8.
Rich feature hierarchies for accurate object detection and semantic segmentation
9.
Rapid Object Detection using a Boosted Cascade of Simple Features
10.
RILOD Near Real-Time Incremental Learning for Object Detection at the Edge 翻譯
更多相關文章...
•
Scala for循環
-
Scala教程
•
Swift for 循環
-
Swift 教程
•
Java 8 Stream 教程
•
Java Agent入門實戰(三)-JVM Attach原理與使用
相關標籤/搜索
rich
features
detection
learning
object...object
object
track+detection
Deep Learning
Meta-learning
Learning Perl
MyBatis教程
Hibernate教程
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
微軟準備淘汰 SHA-1
2.
Windows Server 2019 Update 2010,20H2
3.
Jmeter+Selenium結合使用(完整篇)
4.
windows服務基礎
5.
mysql 查看線程及kill線程
6.
DevExpresss LookUpEdit詳解
7.
GitLab簡單配置SSHKey與計算機建立連接
8.
桶排序(BucketSort)
9.
桶排序(BucketSort)
10.
C++ 桶排序(BucketSort)
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
《Learning Rich Features at High-Speed for Single-Shot Object Detection》筆記
2.
【論文筆記】:Learning Rich Features at High-Speed for Single-Shot Object Detection
3.
Learning Rich Features at High-Speed for Single-Shot Object Detection 論文筆記
4.
Learning Region Features for Object Detection
5.
Learning Rich Features from RGB-D Images for Object Detection and Segmentation(ECCV2014)
6.
論文筆記:Learning Region Features for Object Detection
7.
Learning Rich Features for Image Manipulation Detection(CVPR 2018 圖像篡改檢測)
8.
Rich feature hierarchies for accurate object detection and semantic segmentation
9.
Rapid Object Detection using a Boosted Cascade of Simple Features
10.
RILOD Near Real-Time Incremental Learning for Object Detection at the Edge 翻譯
>>更多相關文章<<