1. 數組中無重複元素數組
Suppose an array sorted in ascending order is rotated at some pivot unknown to you beforehand. (i.e., [0,1,2,4,5,6,7]
might become [4,5,6,7,0,1,2]
).spa
You are given a target value to search. If found in the array return its index, otherwise return -1
.code
You may assume no duplicate exists in the array.blog
Your algorithm's runtime complexity must be in the order of O(log n).索引
Example 1:get
Input: nums = [, target = 0
Output: 4
4,5,6,7,0,1,2]
Example 2:it
Input: nums = [, target = 3
Output: -1
1.1 尋找最小值所在的點
創建模型求解4,5,6,7,0,1,2]
本題關鍵在於求解 最小值所在的索引,再經過二分法求解便可。class
選擇right做爲比較的軸值,緣由在於nums[right] 永遠不會等於nums[mid],分一下三種狀況討論。循環
若是中間值比最右端的值大,那麼應該讓 left = mid + 1,若是中間值比最右端小,那麼應該讓right = mid,由於nums[mid] = y1時也是知足中間值比最右端小,不該該讓right = mid - 1.im
循環結束時left = right = index(y1)
1.2 二分法求解
先按照標準的二分法思路求解,不一樣的是,旋轉之後,中間值與未旋轉以前老是向後偏移最小值索引個單位。
int search(vector<int>& nums, int target) { int left = 0; int right = nums.size() - 1; int mid = 0; while (left < right) { mid = (left + right) / 2; if (nums[mid] <= nums[right]) { right = mid; } else { left = mid + 1; } } int point = left; left = 0; right = nums.size() - 1; while (left <= right) { int medium = (left + right) / 2; mid = (medium + point) % nums.size(); if (nums[mid] < target) { left = medium + 1; } else if (nums[mid] > target) { right = medium - 1; } else { return mid; } } return -1; }