DeepMind 開源圖神經網絡的代碼

用於支持論文《Relational inductive biases, deep learning, and graph networks》。node

githubgit

A graph network takes a graph as input and returns a graph as output. The input graph has edge- (E ), node- (V ), and global-level (u) attributes. The output graph has the same structure, but updated attributes. Graph networks are part of the broader family of "graph neural networks" (Scarselli et al., 2009).github

講直白一些,就是用神經網絡處理圖,輸入是圖,輸出也是圖。之前都是處理向量(Vector),因此NLP中須要作Word2Vec後才能運用深度學習的處理結果。做者們認爲 Graph2Graph 是讓神經網絡具有推理(Reason)能力的一個關鍵步驟。網絡

【CNN已老,GNN來了】DeepMind、谷歌大腦、MIT等27位做者重磅論文,圖網絡讓深度學習也能因果推理學習

相關文章
相關標籤/搜索