Jenkins 使用 Kubernetes Plugin 完成持續構建與發佈

介紹

基於Kubernetes和Jenkins來實現CI/CD。 全部須要跑任務的jenkins slave(pod)經過模版動態建立,當任務執行結束自動刪除。node

clipboard.png

系統總體架構

clipboard.png

job流程

clipboard.png

環境

kubernetspython

jenkins配置

jenkins-deployment.yaml
apiVersion: "apps/v1beta1"
kind: "Deployment"
metadata:
  name: "jenkins"
  labels:
    name: "jenkins"
spec:
  replicas: 1
  template:
    metadata:
      name: "jenkins"
      labels:
        name: "jenkins"
    spec:
      containers:
        - name: jenkins
          image: jenkinsci/jenkins:2.154
          imagePullPolicy: IfNotPresent
          volumeMounts:
          - name: jenkins-home
            mountPath: /var/jenkins_home
          env:
            - name: TZ
              value: Asia/Shanghai
          ports:
          - containerPort: 8080 
            name: web
          - containerPort: 50000
            name: agent
      volumes:
        - name: jenkins-home
          nfs:
            path: "/nfs/jenkins/data"
            server: "cpu029.hogpu.cc"
      terminationGracePeriodSeconds: 10
      serviceAccountName: jenkins
jenkins-account.yaml
---
apiVersion: v1
kind: ServiceAccount
metadata:
  name: jenkins

---
kind: Role
apiVersion: rbac.authorization.k8s.io/v1beta1
metadata:
  name: jenkins
rules:
- apiGroups: [""]
  resources: ["pods"]
  verbs: ["create","delete","get","list","patch","update","watch"]
- apiGroups: [""]
  resources: ["pods/exec"]
  verbs: ["create","delete","get","list","patch","update","watch"]
- apiGroups: [""]
  resources: ["pods/log"]
  verbs: ["get","list","watch"]
- apiGroups: [""]
  resources: ["secrets"]
  verbs: ["get"]
- apiGroups: [""]
  resources: ["configmap"]
  verbs: ["get"]

---
apiVersion: rbac.authorization.k8s.io/v1beta1
kind: RoleBinding
metadata:
  name: jenkins
roleRef:
  apiGroup: rbac.authorization.k8s.io
  kind: Role
  name: jenkins
subjects:
- kind: ServiceAccount
  name: jenkins
jenkins-service.yaml
kind: Service
apiVersion: v1
metadata:
  labels:
    k8s-app: jenkins
  name: jenkins
spec:
  type: NodePort
  ports:
    - port: 8080
      name: web
      targetPort: 8080
    - port: 50000
      name: agent
      targetPort: 50000
  selector:
    name: jenkins

說明

說明一下:這裏 Service 咱們暴漏了端口 8080 和 50000,8080 爲訪問 Jenkins Server 頁面端口,50000 爲建立的 Jenkins Slave 與 Master 創建鏈接進行通訊的默認端口,若是不暴露的話,Slave 沒法跟 Master 創建鏈接。這裏使用 NodePort 方式暴漏端口,並未指定其端口號,由 Kubernetes 系統默認分配,固然也能夠指定不重複的端口號(範圍在 30000~32767)git

建立jenkins

接下來,經過 kubectl 命令行執行建立 Jenkins Service。

$ kubectl create namespace kubernetes-plugin
$ kubectl config set-context $(kubectl config current-context) --namespace=kubernetes-plugin
$ kubectl create -f jenkins-deployment.yaml
$ kubectl create -f jenkins-account.yaml
$ kubectl create -f jenkins-service.yaml

ps:github

建立一個新的 namespace 爲 kubernetes-plugin,而且將當前 context 設置爲 kubernetes-plugin namespace 這樣就會自動切換到該空間下。

查看狀態

jianyu.tian@yz-gpu-k8s004 ~]$ kubectl get deployment,svc,pods
NAME             DESIRED   CURRENT   UP-TO-DATE   AVAILABLE   AGE
deploy/jenkins   1         1         1            1           1h

NAME          TYPE       CLUSTER-IP      EXTERNAL-IP   PORT(S)                          AGE
svc/jenkins   NodePort   10.106.235.91   <none>        8080:31051/TCP,50000:30545/TCP   2h

NAME                          READY     STATUS    RESTARTS   AGE
po/jenkins-64564fc5c9-pzlpb   1/1       Running   0          1h

ps:web

Jenkins Master 服務已經啓動起來了,而且將端口暴漏到 8080:31051,50000:30545,此時能夠經過瀏覽器打開 http://<Cluster_IP>:30645 訪問 Jenkins 頁面了。

jenkins web界面初始化

1.主要對jenkins-plugin插件作說明docker

安裝完畢後,點擊 「系統管理」 —> 「系統設置」 —> 「新增一個雲」 —> 選擇 「Kubernetes」,而後填寫 Kubernetes 和 Jenkins 配置信息。centos

clipboard.png

ps:
Name 處默認爲 kubernetes,也能夠修改成其餘名稱,若是這裏修改了,下邊在執行 Job 時指定 podTemplate() 參數 cloud 爲其對應名稱,不然會找不到,cloud 默認值取:kubernetes
Kubernetes URL 處我填寫了 https://kubernetes.default.sv... 這裏我填寫了 Kubernetes Service 對應的 DNS 記錄,經過該 DNS 記錄能夠解析成該 Service 的 Cluster IP,或者直接填寫外部 Kubernetes 的地址 https://&lt;ClusterIP>:<Ports>。
Jenkins URL 處我填寫了 http://jenkins.kubernetes-plugin:8080,跟上邊相似,也是使用 Jenkins Service 對應的 DNS 記錄,不過要指定爲 8080 端口,由於咱們設置暴漏 8080 端口。同時也能夠用 http://&lt;ClusterIP>:<Node_Port>api

配置完畢,能夠點擊 「Test Connection」 按鈕測試是否可以鏈接的到 Kubernetes,若是顯示 Connection test successful 則表示鏈接成功,配置沒有問題。瀏覽器

測試

建立一個 Pipeline 類型 Job:bash

pipeline {
    agent any
  //並行操做
    stages {
        stage("test_all") {
            parallel {
                stage("python3-cuda9.2") {
                    agent {
                        kubernetes {
                            label 'mxnet-python3-cuda9'
                            yaml """
apiVersion: "v1"
kind: "Pod"
metadata:
  labels:
    name: "mxnet-python3-cuda9"
spec:
  affinity:
    nodeAffinity:
      requiredDuringSchedulingIgnoredDuringExecution:
        nodeSelectorTerms:
        - matchExpressions:
          - key: hobot.workas
            operator: In
            values:
            - gpu
          - key: kubernetes.io/nvidia-gpu-name
            operator: In
            values:
            - TITAN_V
  containers:
  - name: mxnetone
    image: docker.hobot.cc/dlp/mxnetci:runtime-py3.6-cudnn7.3-cuda9.2-centos7
    imagePullPolicy: Always
    resources:
      limits:
        nvidia.com/gpu: 1
"""
                }
            }
                   stages {
                        stage("拉取代碼") {
                            steps {
                                container("mxnetone") {
                                    checkout(
                                        [
                                            $class: 'GitSCM', 
                                            branches: [[name: 'nnvm']], 
                                            browser: [$class: 'Phabricator', repo: 'rMXNET', repoUrl: ''], 
                                            doGenerateSubmoduleConfigurations: false, extensions: [[$class: 'SubmoduleOption', disableSubmodules: false, parentCredentials: true, recursiveSubmodules: true, reference: '', trackingSubmodules: false]],
                                            submoduleCfg: [],
                                            userRemoteConfigs: [[credentialsId: 'zhaoming_private', url: '']]
                                        ]
                                    )                   
                                }
                            }
                        }
                        stage("編譯") {
                            steps {
                                container("mxnetone") {
                                    sh """
                                    nvidia-smi
                                    source /root/.bashrc
                                    make deps
                                    echo -e "USE_PROFILER=1\nUSE_GLOG=0\nUSE_HDFS=0" >> ./make/config.mk
                                    sed -i "s#USE_CUDA_PATH = /usr/local/cuda-8.0#USE_CUDA_PATH = /usr/local/cuda-9.2#g" ./make/config.mk
                                    make lint
                                    make -j 12
                                    ln -s /home/data ./
                                    make test |  tee unittest.log
                                    """
                                }
                            }
                        }
                        stage("單元測試") {
                            steps {
                              container("mxnetone") {
                                    sh """
                                    cp -rf python/mxnet ./
                                    cp -f lib/libmxnet.so mxnet/
                                    echo "-------Running tests under Python3-------"
                                    python3 -V
                                    python3 `which nosetests` tests/python/train
                                    python3 `which nosetests` -v -d tests/python/unittest
                                       """
                                }
                            }
                        }
                    }
                }

                stage("python2-cuda9.2") {
                    agent {
                        kubernetes {
                            label 'mxnet-python2-cuda9'
                            yaml """
apiVersion: "v1"
kind: "Pod"
metadata:
  labels:
    name: "mxnet-python2-cuda9"
spec:
  affinity:
    nodeAffinity:
      requiredDuringSchedulingIgnoredDuringExecution:
        nodeSelectorTerms:
        - matchExpressions:
          - key: hobot.workas
            operator: In
            values:
            - gpu
          - key: kubernetes.io/nvidia-gpu-name
            operator: In
            values:
            - TITAN_V
  containers:
  - name: mxnettwo
    image: docker.hobot.cc/dlp/mxnetci:runtime-cudnn7.3-cuda9.2-centos7
    imagePullPolicy: Always
    resources:
      limits:
        nvidia.com/gpu: 1
"""
            }
        }
                     stages {
                        stage("拉取代碼") {
                            steps {
                                container("mxnettwo") {
                                    checkout(
                                        [
                                            $class: 'GitSCM', 
                                            branches: [[name: 'nnvm']], 
                                            browser: [$class: 'Phabricator', repo: 'rMXNET', repoUrl: ''], 
                                            doGenerateSubmoduleConfigurations: false, extensions: [[$class: 'SubmoduleOption', disableSubmodules: false, parentCredentials: true, recursiveSubmodules: true, reference: '', trackingSubmodules: false]],
                                            submoduleCfg: [],
                                            userRemoteConfigs: [[credentialsId: 'zhaoming_private', url: '']]
                                        ]
                                    )
                                }
                            }
                        }
                        stage("編譯") {
                            steps {
                                container("mxnettwo") {
                                    sh """
                                    nvidia-smi
                                    pip2 install numpy==1.14.3 -i https://mirrors.aliyun.com/pypi/simple/
                                    source /root/.bashrc
                                    make deps
                                    echo -e "USE_PROFILER=1\nUSE_GLOG=0\nUSE_HDFS=0" >> ./make/config.mk
                                    sed -i "s#USE_CUDA_PATH = /usr/local/cuda-8.0#USE_CUDA_PATH = /usr/local/cuda-9.2#g" ./make/config.mk
                                    make lint
                                    make -j 12
                                    ln -s /home/data ./
                                    make test |  tee unittest.log
                                    """
                                }
                            }
                        }
                        stage("單元測試") {
                            steps {
                              container("mxnettwo") {
                                    sh """
                                    cp -rf python/mxnet ./
                                    cp -f lib/libmxnet.so mxnet/
                                    echo "-------Running tests under Python2-------"
                                    python2 -V
                                    python2 `which nosetests` tests/python/train
                                    python2 `which nosetests` -v -d tests/python/unittest
                                       """
                                }
                            }
                        }
                    }
                }
            }
        }
    }
}

clipboard.png

文檔

https://github.com/jenkinsci/...

相關文章
相關標籤/搜索