同事在研究LZ4 壓縮算法時候給我發來了一段代碼,看完了頓時表示很是震驚:算法
static const int[] MultiplyDeBruijnBitPosition = new int[32] { 0, 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15, 25, 17, 4, 8, 31, 27, 13, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9 }; /// <summary> /// Find the number of trailing zeros in 32-bit. /// </summary> /// <param name="v"></param> /// <returns></returns> static int GetMultiplyDeBruijnBitPosition(uint v) { return MultiplyDeBruijnBitPosition[((uint)((v & -v) * 0x077CB531U)) >> 27]; }
下面依次解釋下這段代碼的意思:數組
假設變量v=123456, 那麼其二進制表示形式爲(...)11110001001000000, -v 在計算機中的二進制表示形式爲(...)00001110111000000, 因此(v & -v) == 1000000, 十進制表示形式爲64。ui
(v & -v) * 0x077CB531 的意思是將常量0x077CB531 向左移位6位(左移6位至關於乘64)。spa
((uint)(v & -v) * 0x077CB5310) >> 27 位的意思是繼續將上一步的結果向右移位27位,由於01串總長度是32位,向右移27位之後低位只剩下5個bits。設計
而0x077CB5310 的二進制表示形式爲00000111011111001011010100110001, 因此上面的步驟至關於以下代碼:code
static int GetMultiplyDeBruijnBitPosition(uint v) { return MultiplyDeBruijnBitPosition[27]; }
根據上面的常量數組,可知當v 等於123456時,其(v & -v) 的二進制表示行爲末尾含有6個0。orm
這個算法的用處目前看主要有兩種:blog
1. 快速計算log2(v & -v);ip
2. 任意給定兩個32-bit 的整型數組,對其中的數據進行異或運算,獲得的值v, 採用如上算法判斷第幾位是不一樣的,從而用於壓縮算法。rem
以上是關於這個常量的簡要介紹,下面重點介紹下這個常量的特色:
1. 32-bit 長度;
2. 上一個5 bits 長度的01串的後四位是下一個01串的前四位,好比10001 的下一位是00010/00011;
3. 首尾是循環的;
根據以上3條規則,設計查找常量值算法代碼以下:
using System; using System.Collections.Generic; namespace Test { class Program { static List<string> deBruijnList = new List<string>(); static List<string> deBruijnReserveList = new List<string>(); static string[] flagArray = new string[] { "0", "1" }; static readonly int DeBruijnLength = 5; static readonly double MaxDeBruijnListCount = Math.Pow(2, DeBruijnLength) - 4; static readonly uint ConstOne = 0x077CB531; static readonly uint ConstTwo = 0x0653ADF1; static void Init() { deBruijnReserveList.Add("00010"); deBruijnReserveList.Add("00100"); deBruijnReserveList.Add("01000"); deBruijnReserveList.Add("10000"); } static uint[] GetConstArray(uint constInt) { //uint constInt = 0x077CB531; uint[] constArray = new uint[32]; uint j = 0; for (int i = 0; i < constArray.Length; i++) { j = (uint)((constInt << i)) >> 27; constArray[j] = (uint)i; } return constArray; } static const int[] MultiplyDeBruijnBitPosition = new int[32] { 0, 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15, 25, 17, 4, 8, 31, 27, 13, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9 }; /// <summary> /// Find the number of trailing zeros in 32-bit. /// </summary> /// <param name="v"></param> /// <returns></returns> static int GetMultiplyDeBruijnBitPosition(uint v) { return MultiplyDeBruijnBitPosition[((uint)((v & -v) * 0x077CB531U)) >> 27]; } static void GetDeBruijnKeyStr() { string deBruijnStr = "00000111011111001011010100110001"; for (int i = 0; i < deBruijnStr.Length - DeBruijnLength; i++) { Console.WriteLine(deBruijnStr.Substring(i, DeBruijnLength)); } } static void GetDeBruijnKey(string currentKey) { string currentKeysLast4ValueStr = currentKey.Substring(1); string nextKeyFormer4ValueStr = currentKeysLast4ValueStr; string nextKeyFlagZero = nextKeyFormer4ValueStr + "0"; string nextKeyFlagOne = nextKeyFormer4ValueStr + "1"; if (deBruijnList.Count == MaxDeBruijnListCount) { return; } else if (deBruijnList.Count > MaxDeBruijnListCount) { deBruijnList.Remove(currentKey); return; } if ((deBruijnList.Contains(nextKeyFlagZero) || deBruijnReserveList.Contains(nextKeyFlagZero)) && (deBruijnList.Contains(nextKeyFlagOne) || deBruijnReserveList.Contains(nextKeyFlagOne))) { deBruijnList.Remove(currentKey); return; } if (!deBruijnList.Contains(nextKeyFlagZero) && !deBruijnReserveList.Contains(nextKeyFlagZero)) { deBruijnList.Add(nextKeyFlagZero); GetDeBruijnKey(nextKeyFlagZero); } if (!deBruijnList.Contains(nextKeyFlagOne) && !deBruijnReserveList.Contains(nextKeyFlagOne)) { deBruijnList.Add(nextKeyFlagOne); GetDeBruijnKey(nextKeyFlagOne); } //No new entry was added, so just remove the parent key. int lastIndexOfDeBruijnList = deBruijnList.Count - 1; if (deBruijnList[lastIndexOfDeBruijnList] == currentKey) { deBruijnList.Remove(currentKey); } } static void Main(string[] args) { Init(); GetDeBruijnKey("00000"); foreach (string deBruijnStr in deBruijnList) { Console.WriteLine(deBruijnStr); } Console.ReadLine(); } } }
最後獲得的新的「逆天」常量值爲0x0653ADF1U, 根據常量能夠獲得常量數組,算法以下:
//ConstOne = 0x077CB531; //ConstOne = 0x0653ADF1; static uint[] GetConstArray(uint constInt) { //uint constInt = 0x077CB531; uint[] constArray = new uint[32]; uint j = 0; for (int i = 0; i < constArray.Length; i++) { j = (uint)((constInt << i)) >> 27; constArray[j] = (uint)i; } return constArray; }
新的常量數組以下:
static const int[] MultiplyDeBruijnBitPosition2 = new int[32] { 0, 1, 28, 2, 29, 7, 3, 12, 30, 10, 8, 17, 4, 19, 13, 22, 31, 27, 6, 11, 9, 16, 18, 21, 26, 5, 15, 20, 25, 14, 24, 23 };
由此可知,「逆天」常量並不止一個,歡迎你們參與研究、討論。