下載連接:https://software.intel.com/en-us/mklwindows
官網註冊後,選擇MKL下載下來,安裝到指定目錄就行,不在多說。測試
首先建立一個Windows桌面項目,再添加一個CPP源文件。spa
打開項目屬性頁--配置屬性,會多出Intel Performance...這一項,看下圖配置scala
在打開VC++目錄,進行配置。我安裝MKL的地方在D:\IntelSWToolscode
打開D:\IntelSWTools\compilers_and_libraries_2019.5.281\windows,因爲版本不一樣,可能後面的版本更新日期可能不一樣。按照下面根據你的狀況添加。orm
可執行文件目錄:D:\IntelSWTools\compilers_and_libraries_2019.5.281\windows\mkl\binblog
包含目錄:D:\IntelSWTools\compilers_and_libraries_2019.5.281\windows\mkl\includeip
庫目錄:ci
D:\IntelSWTools\compilers_and_libraries_2019.5.281\windows\compiler\lib\ia32_winget
D:\IntelSWTools\compilers_and_libraries_2019.5.281\windows\mkl\lib\ia32_win
打開連接器,在附加依賴項添加
mkl_intel_c.lib;mkl_intel_thread.lib;mkl_core.lib;libiomp5md.lib;
#include <stdio.h> #include <stdlib.h> #include "mkl.h" #define min(x,y) (((x) < (y)) ? (x) : (y)) int main() { double* A, * B, * C; int m, n, k, i, j; double alpha, beta; printf("\n This example computes real matrix C=alpha*A*B+beta*C using \n" " Intel(R) MKL function dgemm, where A, B, and C are matrices and \n" " alpha and beta are double precision scalars\n\n"); m = 2000, k = 200, n = 1000; printf(" Initializing data for matrix multiplication C=A*B for matrix \n" " A(%ix%i) and matrix B(%ix%i)\n\n", m, k, k, n); alpha = 1.0; beta = 0.0; printf(" Allocating memory for matrices aligned on 64-byte boundary for better \n" " performance \n\n"); A = (double*)mkl_malloc(m * k * sizeof(double), 64); B = (double*)mkl_malloc(k * n * sizeof(double), 64); C = (double*)mkl_malloc(m * n * sizeof(double), 64); if (A == NULL || B == NULL || C == NULL) { printf("\n ERROR: Can't allocate memory for matrices. Aborting... \n\n"); mkl_free(A); mkl_free(B); mkl_free(C); return 1; } printf(" Intializing matrix data \n\n"); for (i = 0; i < (m * k); i++) { A[i] = (double)(i + 1); } for (i = 0; i < (k * n); i++) { B[i] = (double)(-i - 1); } for (i = 0; i < (m * n); i++) { C[i] = 0.0; } printf(" Computing matrix product using Intel(R) MKL dgemm function via CBLAS interface \n\n"); cblas_dgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans, m, n, k, alpha, A, k, B, n, beta, C, n); printf("\n Computations completed.\n\n"); printf(" Top left corner of matrix A: \n"); for (i = 0; i < min(m, 6); i++) { for (j = 0; j < min(k, 6); j++) { printf("%12.0f", A[j + i * k]); } printf("\n"); } printf("\n Top left corner of matrix B: \n"); for (i = 0; i < min(k, 6); i++) { for (j = 0; j < min(n, 6); j++) { printf("%12.0f", B[j + i * n]); } printf("\n"); } printf("\n Top left corner of matrix C: \n"); for (i = 0; i < min(m, 6); i++) { for (j = 0; j < min(n, 6); j++) { printf("%12.5G", C[j + i * n]); } printf("\n"); } printf("\n Deallocating memory \n\n"); mkl_free(A); mkl_free(B); mkl_free(C); printf(" Example completed. \n\n"); system("PAUSE"); return 0; }