中國剩餘定理 \(CRT\)html
\(Lucas\) 定理ios
\(ExGCD\)c++
億點點數學知識學習
給龍蝶打波廣告ui
\(C^m_n = C^{m\% mod}_{n\% mod} \times C^{\frac{m}{mod}}_{\frac{n}{mod}}\)spa
給出的數據範圍較大(沒法用線性求出)code
模數很爛的時候(會使階乘中出現 \(0\))htm
\(mod\) 必須爲質數blog
#include <cstdio> #include <cstring> #include <iostream> #include <algorithm> #define int long long #define DEBUG puts ("emmmm"); using namespace std; const int maxn = 1e5 + 50, INF = 0x3f3f3f3f; inline int read () { register int x = 0, w = 1; char ch = getchar(); for (; ch < '0' || ch > '9'; ch = getchar()) if (ch == '-') w = -1; for (; ch >= '0' && ch <= '9'; ch = getchar()) x = x * 10 + ch - '0'; return x * w; } int T, n, m, mod; int jc[maxn]; inline void Init () { jc[1] = 1; for (register int i = 2; i <= n + m; i ++) { jc[i] = jc[i - 1] * i % mod; } } inline int qpow (register int a, register int b) { register int ans = 1; while (b) { if (b & 1) ans = ans * a % mod; a = a * a % mod; b >>= 1; } return ans; } inline int C (register int a, register int b) { if (a == 0 || b == 0 || a == b) return 1; if (a < b) return 0; return jc[a] * qpow (jc[a - b], mod - 2) % mod * qpow (jc[b], mod - 2) % mod; } inline int Lucas (register int a, register int b) { if (a == 0 || b == 0) return 1; return C (a % mod, b % mod) * Lucas (a / mod, b / mod) % mod; } signed main () { T = read(); while (T --) { n = read(), m = read(), mod = read(); Init (); printf ("%lld\n", Lucas (n + m, n)); } return 0; }
若題目中給出的 \(mod\) 不能保證是質數,當咱們在求的時候,仍是會出現 \(0\) 的狀況,\(ExLuacs\) 就是來解決這種問題的。
對於一個非質數 \(p\),咱們能夠將其進行質因數分解,化成 \(\prod_ip_i^{k_i}\) 的形式。
咱們就能夠將原式子 \(C^m_n(mod \; p)\) 化成若干個同餘方程:
\(\left\{\begin{matrix} C^m_n \equiv b_1 (mod \; p_1^{k_1})\\ C^m_n \equiv b_2 (mod \; p_2^{k_2})\\ C^m_n \equiv b_3 (mod \; p_3^{k_3})\\ ......\\ C^m_n \equiv b_i (mod \; p_i^{k_i}) \end{matrix}\right.\)
這樣最後用 \(CRT\) 求出 \(C^m_n\) 便可。
\(b_i = C^m_n (mod \; p_i ^ {k_i}) = \frac{n!}{m! \times (n - m)!} (mod \; p_i ^ {k_i})\)
可是咱們會發現 \(p_i ^ {k_i}\) 仍不是質數, \(m!\) 和 \((n - m)!\) 的逆元仍求不出來。
因此咱們將 \(n!\) 和 \(m!\) 和 \((n - m)!\) 中的全部質因子 \(p_i\) 都提出來,化成:
\(\frac{\frac{n!}{p_i^{k_1}}}{\frac{m!}{p_i^{k_2}} \times \frac{(n - m)!}{p_i^{k_3}}} \times p_i^{k_1-k_2-k_3}\)
這樣分母上的就能夠求出逆元了。
舉個栗子!!
例如 \(n=22,p=3,k=2\)
\(n!=22\times 21\times 20\times 19\times 18\times 17\times 16\times 15\times 14\times 13\times 12\times 11\times 10\times 9\times 8\times 7\times 6\times 5\times 4\times 3\times 2\times 1\)
\(=3^7\times(1\times 2\times 3\times 4\times 5\times 6\times 7) \times (1\times 2\times 4\times 5\times 7\times 8)\times (10\times 11\times 13\times 14\times 16\times 17)\times (19\times 20\times 22)\)
咱們會發現這個式子由三部分組成:
\(3^7\) 爲 \(p^{\frac{n!}{p}}\)
\(7!\) 能夠繼續遞歸下去求解
能夠看出是在 \((mod \; 9)\) 意義下是一個循環節,長度爲 \(\frac{n}{p_i^{k_i}}\),相似 \(19\times 20\times 22\) 這樣剩下的直接暴力求便可。
可是咱們會發現第一部分會被原式子的分母消掉,因此不用計算,對於剩下的包含質因子 \(p_i\) 的,直接不計算便可。
inline int Calc (register int n, register int p, register int pk) { if (n == 0) return 1; register int ans = 1; for (register int i = 1; i <= pk; i ++) { // 每一個循環節 if (i % p) ans = ans * i % pk; } ans = qpow (ans, n / pk, pk); // 計算全部的循環節 for (register int i = 1; i <= n % pk; i ++) { // 乘下剩下的 if (i % p) ans = ans * i % pk; } return ans * Calc (n / p, p, pk) % pk; }
如今咱們已經將全部要用的東西都求出來了,最後直接倒着退回去便可。
#include <cstdio> #include <cstring> #include <iostream> #include <algorithm> #include <cmath> #define int long long #define DEBUG puts ("emmmm") const int maxn = 1e5 + 50, INF = 0x3f3f3f3f; using namespace std; inline int read () { register int x = 0, w = 1; char ch = getchar (); for (; ch < '0' || ch > '9'; ch = getchar ()) if (ch == '-') w = -1; for (; ch >= '0' && ch <= '9'; ch = getchar ()) x = x * 10 + ch - '0'; return x * w; } int n, m, p, tot; int b[maxn], c[maxn], d[maxn]; inline int qpow (register int a, register int b, register int mod) { register int ans = 1; while (b) { if (b & 1) ans = ans * a % mod; a = a * a % mod; b >>= 1; } return ans; } inline int ExGCD (register int a, register int b, register int &x, register int &y) { if (b == 0) { x = 1, y = 0; return a; } register int d = ExGCD (b, a % b, x, y); register int tmp = x; x = y; y = tmp - (a / b) * y; return d; } inline int Inv (register int a, register int mod) { // 利用擴展歐幾里德求逆元 register int x = 0, y = 0; ExGCD (a, mod, x, y); return (x % mod + mod) % mod; } inline int Calc (register int n, register int p, register int pk) { if (n == 0) return 1; register int ans = 1; for (register int i = 1; i <= pk; i ++) { // 每一個循環節 if (i % p) ans = ans * i % pk; } ans = qpow (ans, n / pk, pk); // 計算全部的循環節 for (register int i = 1; i <= n % pk; i ++) { // 乘下剩下的 if (i % p) ans = ans * i % pk; } return ans * Calc (n / p, p, pk) % pk; } inline int C (register int n, register int m, register int p, register int pk) { if (n == 0 || m == 0 || n == m) return 1; if (n < m) return 0; register int nn = Calc (n, p, pk), mm = Calc (m, p, pk), nm = Calc (n - m, p, pk), cnt = 0, k = n - m; while (n) n /= p, cnt += n; while (m) m /= p, cnt -= m; while (k) k /= p, cnt -= k; return nn * Inv (mm, pk) % pk * Inv (nm, pk) % pk * qpow (p, cnt, pk) % pk; } inline int CRT () { // 中國剩餘定理 register int M = 1, ans = 0; for (register int i = 1; i <= tot; i ++) { M *= c[i]; } for (register int i = 1; i <= tot; i ++) { d[i] = Inv (M / c[i], c[i]); } for (register int i = 1; i <= tot; i ++) { ans += b[i] * (M / c[i]) * d[i]; } return (ans % M + M) % M; } inline void ExLucas (register int n, register int m, register int p) { register int tmp = sqrt (p); for (register int i = 2; i <= tmp && p >= 1; i ++) { // 將p拆分質因數 register int pk = 1; while (p % i == 0) p /= i, pk *= i; if (pk > 1) { b[++ tot] = C (n, m, i, pk), c[tot] = pk; } } if (p > 1) b[++ tot] = C (n, m, p, p), c[tot] = p; printf ("%lld\n", CRT ()); } signed main () { n = read(), m = read(), p = read(); ExLucas (n, m, p); return 0; }
思路很簡單,就是沒取一個 \(w[i]\),總數就得減少,依次用 \(ExLucas\) 求組合數便可。
#include <cstdio> #include <cstring> #include <iostream> #include <algorithm> #include <cmath> #define int long long #define DEBUG puts ("emmmm") const int maxn = 1e5 + 50, INF = 0x3f3f3f3f; using namespace std; inline int read () { register int x = 0, w = 1; char ch = getchar (); for (; ch < '0' || ch > '9'; ch = getchar ()) if (ch == '-') w = -1; for (; ch >= '0' && ch <= '9'; ch = getchar ()) x = x * 10 + ch - '0'; return x * w; } int n, m, p, totw, tot, ans = 1; int w[maxn]; int b[maxn], c[maxn], d[maxn]; inline void Init () { memset (b, 0, sizeof b); memset (c, 0, sizeof c); memset (d, 0, sizeof d); tot = 0; } inline int qpow (register int a, register int b, register int mod) { register int ans = 1; while (b) { if (b & 1) ans = ans * a % mod; a = a * a % mod; b >>= 1; } return ans; } inline int ExGCD (register int a, register int b, register int &x, register int &y) { if (b == 0) { x = 1, y = 0; return a; } register int d = ExGCD (b, a % b, x, y); register int tmp = x; x = y; y = tmp - (a / b) * y; return d; } inline int Inv (register int a, register int mod) { register int x = 0, y = 0; ExGCD (a, mod, x, y); return (x % mod + mod) % mod; } inline int Calc (register int n, register int p, register int pk) { if (n == 0) return 1; register int ans = 1; for (register int i = 1; i <= pk; i ++) { if (i % p) ans = ans * i % pk; } ans = qpow (ans, n / pk, pk); for (register int i = 1; i <= n % pk; i ++) { if (i % p) ans = ans * i % pk; } return ans * Calc (n / p, p, pk) % pk; } inline int C (register int n, register int m, register int p, register int pk) { if (n == 0 || m == 0 || n == m) return 1; if (n < m) return 0; register int nn = Calc (n, p, pk), mm = Calc (m, p, pk), nm = Calc (n - m, p, pk), cnt = 0, k = n - m; while (n) n /= p, cnt += n; while (m) m /= p, cnt -= m; while (k) k /= p, cnt -= k; return nn * Inv (mm, pk) % pk * Inv (nm, pk) % pk * qpow (p, cnt, pk) % pk; } inline int CRT () { register int M = 1, ans = 0; for (register int i = 1; i <= tot; i ++) { M *= c[i]; } for (register int i = 1; i <= tot; i ++) { d[i] = Inv (M / c[i], c[i]); } for (register int i = 1; i <= tot; i ++) { ans += b[i] * (M / c[i]) * d[i]; } return (ans % M + M) % M; } inline int ExLucas (register int n, register int m, register int p) { Init (); register int tmp = sqrt (p); for (register int i = 2; i <= tmp && p > 1; i ++) { register int pk = 1; while (p % i == 0) p /= i, pk *= i; b[++ tot] = C (n, m, i, pk); c[tot] = pk; } if (p > 1) { b[++ tot] = C (n, m, p, p); c[tot] = p; } return CRT (); } signed main () { p = read(), n = read(), m = read(); for (register int i = 1; i <= m; i ++) { w[i] = read(); totw += w[i]; } if (totw > n) { puts ("Impossible"); } else { register int sum = n; for (register int i = 1; i <= m; i ++) { ans = (ans * ExLucas (sum, w[i], p)) % p; sum -= w[i]; } printf ("%lld\n", ans); } return 0; }