二叉搜索樹基本操做均可以在O(h)內完成,然而數的高度較高時,可能並不比在鏈表上執行的快。紅黑樹是平衡搜索樹中的一種保證在最壞狀況下時間複雜度爲O(lg(n))html
紅黑樹的性質spa
由於葉子節點是null,沒有辦法存儲顏色,因此用一個哨兵nil,其餘屬性p、left、right、key是任意值(null)爲好。code
由紅黑樹的性質可知,h最大爲2lg(n+1)htm
旋轉操做blog
圖片來源,其中關於紅黑樹的介紹更詳細圖片
LeftRotate(T, h) { x = h.right; //x的左子樹成爲h的右子樹 h.right = x.left; if (x.left != T.nil) x.left.parent = h; //x的parent是h的parent x.parent = h.parent; //h的parent對應h的子樹,成爲x if (h.parent == T.nil) T.root = x; else if (h == h.parent.left) h.parent.left = x; else h.parent.right = x; //將x的左子樹設置爲h x.left = h; h.parent = y; }
RightRotate(T, x) { h = x.left; //h的右子樹成爲x的左子樹 x.left = h.right; if (h.right != T.nil) h.right.parent = x; //h的parent是x的parent h.parent = x.parent; //x的parent對應x的子樹,成爲h if (x.parent == T.nil) T.root = h; else if (x == x.parent.right) x.parent.right = h; else x.parent.left = h; //將h的右子樹設置爲x h.right = x; x.parent = y; }
插入操做get
插入操做與搜索二叉樹操做基本相同。須要注意的是class
TreeInsert(T, z) { y = T.nil; x = T.root; while (x != T.nil) { y = x; if (z.key < x.key) x = x.left; else x = x.right; } x.parent = y; if (y == T.nil) T.root = z; else if (z.key < y.key) y.left = z; else y.right = z; z.left = z.right = T.nil; z.color = RED; RbInsertFixup(T, z); }
理解RbInsertFixup二叉樹
RbInserFixup(T, z) { while (z.parent.color == RED) { if (z.parent == z.parent.parent.left) { y = z.parent.parent.right; if (y.color == RED) { z.parent.color = BLACK; y.color = BLACK; z.parent.parent.color = RED; z = z.parent.parent; } else if (z == z.parent.right) { z = z.parent; LeftRotate(T, z); } z.parent.color = BLACK; z.parent.parent.color = RED; } else//將傷醫狀況的right與left換一下 { y = z.parent.parent.left; if (y.color == RED) { z.parent.color = BLACK; y.color = BLACK; z.parent.parent.color = RED; z = z.parent.parent; } else if (z == z.parent.left) { z = z.parent; LeftRotate(T, z); } z.parent.color = BLACK; z.parent.parent.color = RED; } } }
刪除操做搜索
狀況與二叉搜索樹類比。首先須要一個Transplant應用到紅黑樹上
RbTransplant(T, u, v) { if (u.parent == T.nil) T.root = v; else if (u == u.parent.left) u.parent.left = v; else u.parent.right = v; v.parent = u.parent; }
而後執行刪除
RbTreeDelete(T, z) { y = z; yOriginalColor = y.color; if (z.left == T.nil) { x = z.right; RbTransplant(T, z, z.right); } else if (z.right == T.nil) { x = z.left; RbTransplant(T, z, z.left); } else { y = TreeMinimum(z.right);//z有雙子,則後繼爲右側最小 yOriginalColor = y.color; x = y.right; if (y.parent == z) { x.parent = y; } else { BrTransplant(T, y, y.right); y.right = z.right; y.right.parent = y; } BrTransplant(T, z, y); y.left = z.left; y.left.p = y; y.color = z.color; } if (yOriginalColor == BLACK) RbDeleteFixup(T, x); }
RbDeleteFixup(T, x) { while (x != T.root && x.color == BLACK) { if (x == x.parent.left) { w = x.parent.right; if (w.color == RED) { w.color = BLACK; x.p.color = RED; LeftRotate(T, x.parent); w = x.parent.right; } if (w.left.color == BLACK && w.right.color == BLACK) { w.color = RED; x = x.parent; } else { w.left.color = BLACK; w.color = RED; RightRotate(T, w); w.x.parent.right; } w.color = x.parent.color; x.parent.color = BLACK; w.right.color = BLACK; LeftRotate(T, x.p); x = T.root; } else //change right and left { w = x.parent.left; if (w.color == RED) { w.color = BLACK; x.p.color = RED; LeftRotate(T, x.parent); w = x.parent.left; } if (w.right.color == BLACK && w.left.color == BLACK) { w.color = RED; x = x.parent; } else { w.right.color = BLACK; w.color = RED; RightRotate(T, w); w.x.parent.left; } w.color = x.parent.color; x.parent.color = BLACK; w.left.color = BLACK; LeftRotate(T, x.p); x = T.root; } } x.color = BLACK; }
對紅黑樹的Extent
::動態順序統計
在紅黑樹的每一個節點中加入一個size屬性,表示這棵樹的節點數,其中哨兵的節點數size爲0。則
x.size=x.left.size+z.right.size+1