Memcached 補充

Memcached 補充

Memcached 是一個高性能的分佈式內存對象緩存系統,用於動態Web應用以減輕數據庫負載。它經過在內存中緩存數據和對象來減小讀取數據庫的次數,從而提升動態、數據庫驅動網站的速度。Memcached基於一個存儲鍵/值對的hashmap。其守護進程(daemon )是用C寫的,可是客戶端能夠用任何語言來編寫,並經過memcached協議與守護進程通訊。python


(1) Memcached安裝和基本使用redis

Memcached安裝:數據庫

wget http://memcached.org/latest
tar -zxvf memcached-1.x.x.tar.gz
cd memcached-1.x.x
./configure && make && make test && sudo make install
 
PS:依賴libevent
       yum install libevent-devel
       apt-get install libevent-dev

啓動Memcached緩存

memcached -d -m 10    -u root -l 10.211.55.4 -p 12000 -c 256 -P /tmp/memcached.pid
 
參數說明:
    -d 是啓動一個守護進程
    -m 是分配給Memcache使用的內存數量,單位是MB
    -u 是運行Memcache的用戶
    -l 是監聽的服務器IP地址
    -p 是設置Memcache監聽的端口,最好是1024以上的端口
    -c 選項是最大運行的併發鏈接數,默認是1024,按照你服務器的負載量來設定
    -P 是設置保存Memcache的pid文件

Memcached命令服務器

存儲命令: set/add/replace/append/prepend/cas
獲取命令: get/gets
其餘命令: delete/stats..


(2) Python操做Memcached數據結構

安裝

python操做Memcached使用Python-memcached模塊
下載安裝:https://pypi.python.org/pypi/python-memcached

基本命令:併發

import memcache
 
mc = memcache.Client(['10.211.55.4:12000'], debug=True)
mc.set("foo", "bar")
ret = mc.get('foo')
print ret

支持集羣app

原理是在內存維護一個主機列表,且集羣中主機的權重值和主機在列表中重複出現的次數成正比

主機    權重
    1.1.1.1   1
    1.1.1.2   2
    1.1.1.3   1
 
那麼在內存中主機列表爲:
    host_list = ["1.1.1.1", "1.1.1.2", "1.1.1.2", "1.1.1.3", ]


mc = memcache.Client([('1.1.1.1:12000', 1), ('1.1.1.2:12000', 2), ('1.1.1.3:12000', 1)], debug=True)     
mc.set('k1', 'v1')

命令詳解分佈式

1 add

添加一條鍵值對,若是已經存在的 key,重複執行add操做異常

#!/usr/bin/env python
# -*- coding:utf-8 -*-
import memcache
 
mc = memcache.Client(['10.211.55.4:12000'], debug=True)
mc.add('k1', 'v1')
# mc.add('k1', 'v2') # 報錯,對已經存在的key重複添加,失敗!!!


2 replace

replace 修改某個key的值,若是key不存在,則異常

#!/usr/bin/env python
# -*- coding:utf-8 -*-
import memcache
 
mc = memcache.Client(['10.211.55.4:12000'], debug=True)
# 若是memcache中存在kkkk,則替換成功,不然一場
mc.replace('kkkk','999')


3 set 和 set_multi

set            設置一個鍵值對,若是key不存在,則建立,若是key存在,則修改
set_multi   設置多個鍵值對,若是key不存在,則建立,若是key存在,則修改

#!/usr/bin/env python
# -*- coding:utf-8 -*-
import memcache
 
mc = memcache.Client(['10.211.55.4:12000'], debug=True)
 
mc.set('key0', 'wupeiqi')
 
mc.set_multi({'key1': 'val1', 'key2': 'val2'})


4 delete 和 delete_multi

delete             在Memcached中刪除指定的一個鍵值對
delete_multi    在Memcached中刪除指定的多個鍵值對

#!/usr/bin/env python
# -*- coding:utf-8 -*-
import memcache
 
mc = memcache.Client(['10.211.55.4:12000'], debug=True)
 
mc.delete('key0')
mc.delete_multi(['key1', 'key2'])


5 get 和 get_multi

get            獲取一個鍵值對
get_multi   獲取多一個鍵值對

#!/usr/bin/env python
# -*- coding:utf-8 -*-
import memcache
 
mc = memcache.Client(['10.211.55.4:12000'], debug=True)
 
val = mc.get('key0')
item_dict = mc.get_multi(["key1", "key2", "key3"])



6 append 和 prepend

append    修改指定key的值,在該值 後面 追加內容
prepend   修改指定key的值,在該值 前面 插入內容

#!/usr/bin/env python
# -*- coding:utf-8 -*-
import memcache
 
mc = memcache.Client(['10.211.55.4:12000'], debug=True)
# k1 = "v1"
 
mc.append('k1', 'after')
# k1 = "v1after"
 
mc.prepend('k1', 'before')
# k1 = "beforev1after"


7 decr 和 incr  

incr  自增,將Memcached中的某一個值增長 N ( N默認爲1 )
decr 自減,將Memcached中的某一個值減小 N ( N默認爲1 )

#!/usr/bin/env python
# -*- coding:utf-8 -*-
import memcache
 
mc = memcache.Client(['10.211.55.4:12000'], debug=True)
mc.set('k1', '777')
 
mc.incr('k1')
# k1 = 778
 
mc.incr('k1', 10)
# k1 = 788
 
mc.decr('k1')
# k1 = 787
 
mc.decr('k1', 10)
# k1 = 777

  8 gets 和 cas >> cache_cas=True

同時購買商品的時候

    product_count = 900
    
    若是A、B用戶均購買商品
    
    A用戶修改商品剩餘個數 product_count=899
    B用戶修改商品剩餘個數 product_count=899
    
    這樣兩個用戶購買商品後,商品剩餘仍是 899
    若是使用python的set和get來操做以上過程,那麼程序就會如上述所示狀況!
    
    若是想要避免此狀況的發生,只要使用 gets 和 cas 便可,如:
    
    #!/usr/bin/env python
    # -*- coding:utf-8 -*-
    import memcache
    mc = memcache.Client(['10.211.55.4:12000'], debug=True, cache_cas=True)
     
    v = mc.gets('product_count')
    # ...
    # 若是有人在gets以後和cas以前修改了product_count,那麼,下面的設置將會執行失敗,剖出異常,從而避免非正常數據的產生
    mc.cas('product_count', "899")


(3) Memcached vs Redismemcached

a 我的小站,幾乎不用緩存機制。

    b 性能:兩者的性能都已經足夠高

        固然在100k以上的數據中,Memcached性能要高於Redis

        c 數據持久化和數據同步有所要求:Redis( Redis有部份存在硬盤上,這樣能保證數據的持久性 disk backend, 而Memecache把數據所有存在內存之中,斷電後會掛掉)

    d redis支持豐富的數據結構,memcache只有一種(memcached全部的值均是簡單的字符串,redis做爲其替代者,支持更爲豐富的數據類型)
相關文章
相關標籤/搜索