JavaShuo
欄目
標籤
論文筆記系列-Speeding Up Automatic Hyperparameter Optimization of Deep Neural Networks by Extrapolation of...
時間 2020-12-27
原文
原文鏈接
I. 背景介紹 1. 學習曲線(Learning Curve) 我們都知道在手工調試模型的參數的時候,我們並不會每次都等到模型迭代完後再修改超參數,而是待模型訓練了一定的epoch次數後,通過觀察學習曲線(learning curve, lc) 來判斷是否有必要繼續訓練下去。那什麼是學習曲線呢?主要分爲兩類: 1.模型性能是訓練時間或者迭代次數的函數:performance=f(time) 或 p
>>阅读原文<<
相關文章
1.
[Topic Discussion] Hyperparameter Optimization for Neural Networks
2.
On the Optimization of Deep Networks: Implicit Acceleration by Overparameterization
3.
COURSE 2 Improving Deep Neural Networks Hyperparameter tuning, Regularization and Optimization
4.
課程二(Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization),第三週(Hype
5.
Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization--筆記(第一週)
6.
【論文閱讀筆記】Ristretto: Hardware-Oriented Approximation of Convolutional Neural Networks
7.
論文筆記:Automatic generation of HCCA-resistant scalar multiplication algorithm by proper sequencing of
8.
[論文筆記] [2010] Understanding the Difficulty of Training Deep Feedforward Neural Networks
9.
[論文筆記]Relay Backpropagation for Effective Learning of Deep Convolutional Neural Networks
10.
Exploring the teaching of deep learning in neural networks
更多相關文章...
•
XSLT
元素
-
XSLT 教程
•
XSLT
元素
-
XSLT 教程
•
Tomcat學習筆記(史上最全tomcat學習筆記)
•
Docker容器實戰(七) - 容器眼光下的文件系統
相關標籤/搜索
for...of
for..of
論文筆記
dp of dp
networks
hyperparameter
speeding
optimization
neural
automatic
MySQL教程
NoSQL教程
Spring教程
文件系統
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
IDEA 2019.2解讀:性能更好,體驗更優!
2.
使用雲效搭建前端代碼倉庫管理,構建與部署
3.
Windows本地SVN服務器創建用戶和版本庫使用
4.
Sqli-labs-Less-46(筆記)
5.
Docker真正的入門
6.
vue面試知識點
7.
改變jre目錄之後要做的修改
8.
2019.2.23VScode的c++配置詳細方法
9.
從零開始OpenCV遇到的問題一
10.
創建動畫剪輯
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
[Topic Discussion] Hyperparameter Optimization for Neural Networks
2.
On the Optimization of Deep Networks: Implicit Acceleration by Overparameterization
3.
COURSE 2 Improving Deep Neural Networks Hyperparameter tuning, Regularization and Optimization
4.
課程二(Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization),第三週(Hype
5.
Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization--筆記(第一週)
6.
【論文閱讀筆記】Ristretto: Hardware-Oriented Approximation of Convolutional Neural Networks
7.
論文筆記:Automatic generation of HCCA-resistant scalar multiplication algorithm by proper sequencing of
8.
[論文筆記] [2010] Understanding the Difficulty of Training Deep Feedforward Neural Networks
9.
[論文筆記]Relay Backpropagation for Effective Learning of Deep Convolutional Neural Networks
10.
Exploring the teaching of deep learning in neural networks
>>更多相關文章<<